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Abstract
We propose Neural variational set expansion to extract actionable information from a noisy 
knowledge graph (KG) and propose a general approach for increasing the interpretabil-
ity of recommendation systems. We demonstrate the usefulness of applying a variational 
autoencoder to the Entity set expansion task based on a realistic automatically generated 
KG.

Keywords Set expansion · Cold start recommendation · Content based recommendation · 
Variational autoencoder · Product of experts (POE) · Unsupervised learning

1 Introduction

Imagine a physician trying to pin-point a specific diagnosis or a journalist investigating 
abuses of governmental power. In both scenarios, a domain expert may try to find answers 
based on prior known, relevant entities—either a list of diagnoses of with similar symp-
toms that a patient is experiencing or a list of known conspirators. Instead of manually 
looking for connections between potential answers and prior knowledge, a searcher would 
like to rely on an automatic Recommender to find the connections and answers for them, 
i.e. related entities.

In the information retrieval (IR) community, Entity set expansion (ESE) is the estab-
lished task of recommending entities that are similar to a provided seed of entities.1 ESE 
has been applied in Question Answering (Wang et al. 2008), Relation Extraction (Lang and 
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Henderson 2013) and Information Extraction (He and Grishman 2015) settings. The physi-
cian and journalist in our example can not fully take advantage of IR advances in ESE for 
two main reasons. Recent advances (1) often assume access to a clean, large Knowledge 
Graph and (2) are uninterpretable.

Many advanced ESE algorithms rely on manually curated, clean Knowledge Graphs 
(KG), e.g. DBpedia (Auer  et  al. 2007) and Freebase (Bollacker  et  al. 2008). In real-
world settings, users rarely have access to clean KGs, and instead may rely on automat-
ically generated KGs. Such KGs are often noisy because they are created from compli-
cated and error-prone NLP processes—illustrated in Fig. 1. For example, automatic KGs 
may include duplicate entities, associations (relations) between entities may be missing, 
and entities with similar names may be incorrectly disambiguated. These imperfections 
prevent machine learning approaches from performing well on automatically generated 
KGs. Furthermore, many ESE algorithms degrade as the sparsity and unreliability of KGs 
increases (Pujara et al. 2017; Rastogi et al. 2017). Advanced ESE methods, especially those 
that rely on neural networks, are uninterpretable (Mitra and Craswell 2017). If a physician 
can not explain decisions, patients may not trust her and if a journalist can not demonstrate 
how a certain individual is acting unethically or above the law, a resulting article may lack 
credibility. Furthermore, uniterpretability may limit the applications of advancements in 
IR, and more broadly artificial intelligence, as humans “won’t trust an A.I. unless it can 
explain itself.”2

We introduce Neural variational set expansion (NVSE) to advance the applicability of 
ESE research. NVSE is an unsupervised model based on Variational Autoencoders (VAEs) 
that receives a query, uses a Bayesian approach to determine a latent concept that unifies 
entities in the query, and returns a ranked list of similar entities based on the previously 
determined unified latent concept. NVSE does not require supervised examples of queries 
and responses, nor pre-built clusters of entities. Instead, our method only requires sen-
tences with linked entity mentions, i.e. spans of token associated with a KG entity, often 
included in automatically generated KGs.

NVSE is robust to noisy automatically generated KGs, thus removing the need to rely 
on manually curated, clean KGs. We evaluate NVSE on the ESE task using Tinkerbell (Al-
Badrashiny et al. 2017), an automatically generated KG that placed first in the TAC KGP 
shared task. Unlike how ESE has been used to improve entity linking for KG construc-
tion (Gottipati and Jiang 2011), our goal is the opposite: we leverage noisy automatically 
generated KGs to perform ESE. NVSE is interpretable; it outputs query rationales—a 
summarization of features our models associates with the query—and result justifica-
tions—an ordered list of sentences from the underlying corpus that justify why our method 

Fig. 1  Our Entity set expansion (ESE) system assumes a corpus that has been labeled with entity mentions 
which are clustered via cross-document co-reference and linking to a knowledge base; together known as 
entity discovery and linking (EDL). Given a query containing Obama, Bush, and Clinton, the ESE system 
returns other U.S. presidents found in the KG

2 https ://nyti.ms/2hR1S 15.

https://nyti.ms/2hR1S15
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returned that entity. Query rationales and result justifications are reminiscent of annotator 
rationales (Zaidan et al. 2007).

To our knowledge this is the first unsupervised neural approach for ESE as opposed to 
neural methods for supervised collaborative filtering (Lee et al. 2017). All code and data is 
available at https ://githu b.com/se4u/nvse and a video demonstration of the system is avail-
able at https ://youtu .be/sGO_wvuPI zM.

2  Related work

2.1  Methods dependent on external information

Since automatically generated KGs can be noisy, some methods utilize information beyond 
entity links and mentions to aid ESE. Paşca and Van  Durme (2007) use search engine 
query logs to extract attributes related to entities and Paşca and Van Durme (2008) extract 
sets of instances associated with class labels based on web documents and queries. Pan-
tel et  al. (2009) use a large amount of web data as they apply a learned word similarity 
matrix extracted from a 200 billion word Internet crawl to the ESE task. Both He and Xin 
(2011)’s SEISA system and Tong and Dean (2008)’s Google Sets use lists of items from 
the Internet and try to determine which elements in the lists are most relevant to a query. 
Sadamitsu et al. (2011) rely on given topic information about the queried entities to train a 
discriminative system. More recent approaches also use external information. Zaheer et al. 
(2017) use LDA Blei et al. (2003) to create word clusters for supervision, and Vartak et al. 
(2017) use manual annotations by Twitter users. Zheng et al. (2017) uses inter-entity links 
in knowledge graphs which are very sparse in automatically generated KGs (Pujara et al. 
2017; Rastogi et al. 2017). All of these approaches use more information than just entity 
links and mentions.

2.2  Methods for comparing entities

Set Expander for Any Language (SEAL) (Wang and Cohen 2007) and its variants (Wang 
and Cohen 2008, 2009) learn similarities between new words and example words using 
methods like Random Walks and Random Walks With Restart. Similar to Lin (1998)’s 
using cosine and Jaccard similarity to find similar words, SEISA uses these metrics to 
expand sets. These methods are limited to only extracting words that coocur. Because they 
are applied on web-scale data, SEAL and SEISA assume entities will eventually coocur. 
This assumption might not be valid in an underlying corpus used to automatically gener-
ate a KG. In contrast to those approaches, NVSE finds similar entities based on a kernel 
between distributions.

2.3  Queries as natural language

In the INEX-XER shared task, queries were represented as natural language questions 
(Demartini et al. 2010). Metzger et al. (2014) and Zhang et al. (2017) propose methods to 
extract related entities in a KG based on a natural language query. This scenario is similar 
to a person interacting with a system like Amazon Alexa. However, our setup better reflects 

https://github.com/se4u/nvse
https://youtu.be/sGO_wvuPIzM
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users searching for similar entities in a KG as it is more efficient for users to type entities of 
interest instead of natural language text.

2.4  Neural collaborative filtering

We are not the first to incorporate neural methods in a recommendation system. Recently, 
He et al. (2017) and Lee et al. (2017) presented deep auto-encoders for collaborative fil-
tering. Collaborative Filtering assumes a large dataset of previous user interactions with 
the search engine. For many domains it is not possible to create such a dataset since new 
data is added everyday and queries change rapidly based on different users and domains. 
Therefore, we propose the first neural method which does not use supervision for Entity set 
expansion.

3  Notation

Let  be the corpus of documents and  be the vocabulary of tokens that appear in  . 
We define a document as a sequence of sentences and we define a sentence as a sequence 
of tokens. Let  be the set of entities discovered in  and we refer to its size as X . Each 
entity x ∈  is linked to the tokens that mention x.3 Let  ′ be the set of tokens linked to 
any x ∈  , and let x be the multiset of sentences that mention x in the corpus. For exam-
ple, consider an entity named “Batman” and a document containing three sentences {Bat-
man is good., He is smart. Life is good.}. “Batman” is linked to tokens Batman and He, 
 � = {Batman, He} , and Batman = {Batman is good., He is smart.}.

In ESE, a system receives query  —a subset of —and has to sort the elements 
remaining in  = ⧵ . The elements that are most similar to  should appear higher in 
the sorted order and elements dissimilar to  should be ranked lower.

4  Baseline methods

Before introducing NVSE, we describe the four baselines systems: BM25, Bayesian Sets, 
Word2Vecf and SetExpan. We do not compare to DeepSets (Zaheer et al. 2017), as it is a 
supervised method that requires entity clusters.

For each x, we create a feature vector fx ∈ ℤ
F from x , by concatenating three vectors 

that count how many times (1) a token in V appeared in x (2) a document in  men-
tioned x and (3) a token in  ′ appeared in x . Thus, F = V + D + V�.

4.1  BM25

Best Match 25 (BM25) is “one of the most successful text-retrieval algorithms” (Robertson 
and Zaragoza 2009).4 BM25 ranks remaining entities in  according to the score function

3 We ignore confidence scores that entity linking systems often assign to a link because confidence scores 
will prevent us from using a multinomial distribution to model a document as a bag-of-words.
4 Lucene replaced tf-idf with BM25 as its default algorithm: https ://issue s.apach e.org/jira/brows e/LUCEN 
E-6789.

https://issues.apache.org/jira/browse/LUCENE-6789
https://issues.apache.org/jira/browse/LUCENE-6789
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where fx[j] denotes the j-th feature value in fx , f̄ is the sum of fx∀x ∈  and � is the indi-
cator function. k1 and b are hyperparameters that commonly set to 1.5 and 0.75 (Man-
ning et al. 2008). L̄ is the average total count of a feature in the entire corpus and IDF[i] is 
the inverse document frequency of the ith feature (Appendix 1).

4.2  Bayesian sets

Ghahramani and Heller (2006) introduced the Bayesian Sets (BS) method which converts 
ESE into a bayesian model selection problem. BS compares the probabilities that the query 
entities are generated from a single sample of a latent variable z ∈ ΔF with the probability 
that the entities were generated from independent samples. ΔF is the F − 1 dimensional 
probability simplex. Note that z has the same dimensionality as the observed features. 
Given  and � , the prior distribution of z, BS infers the posterior distribution of z, p(z|) , 
and computes the following score

Ghahramani and Heller (2006) computed scoreBS in close form by selecting the conditional 
probability, p(x|z), from an exponential family distribution and setting � to be its conjugate 
prior. They showed that if p(x|z) is multivariate Bernoulli then BS requires a single matrix 
multiplication (Appendix 3) and we use this setting for our experiments.

4.3  Word2Vecf

Levy and Goldberg (2014) generalize Mikolov et al. (2013)’s Skip-Gram model as Word-
2Vecf to include arbitrary contexts. We embed entities with Word2Vecf by using the entity 
IDs as words5 and the tokens in the sentences mentioning those entities as contexts. Note 
that all tokens in the sentence, except for some stop words, are used as contexts and not just 
co-occurrent entities. We rank the entities in the order of their total distance to the entities 
in the query set as

Here, vx represents the L2-normalized embedding for x.

score
BM

(, x) =
F�

i=1

IDF[i]fx[i]f̄[i](k1 + 1)

fx[i]+k1(1−b+b
∑

j fx[j]∕L̄)
,

(1)score
BS

(, x) = log
Ep(z|)[p(x|z)]
E�(z)[p(x|z)]

.

(2)score
W2V

(, x) = −
∑

x̃∈
(vx − vx̃)

2.

5 Converting entity mentions to entity IDs allows us to overcome issues related to embedding multi-word 
expressions as explained in Poliak et al. (2017).
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4.4  SetExpan

Shen et  al. (2017) introduce SetExpan, a SOTA framework combining context feature 
selection with ranking ensembles, for set expansion. SetExpan outperformed other SE 
methods such as SEISA in their evaluation. SetExpan represents entities by the contexts 
that they are mentioned in. For example, the context features for Batman from Sect. 3 will 
be {__ is good, __ is smart}. The contexts are used to create a large feature vector which 
can be used to compute the inter-entity similarity. The authors argue that using all possible 
features for computing entity similarity can lead to overfitting and semantic drift. To com-
bat these problems SetExpan builds the entity set iteratively by cycling between a context 
feature selection step and an entity selection step. In context feature selection, each context 
feature is assigned a score based on the set of currently expanded entities. Based on these 
scores, the context-features are reranked and the top few context features are selected. The 
entity selection proceeds by bootstrap sampling of the chosen context features and using 
those features to create multiple different ranked lists of entities. Multiple different ranked 
lists are finally combined via a heuristic method for ensembling different ranked lists to 
create a new set of expanded entities. This process is repeated to convergence to get the 
final list of expanded entities.

5  Neural variational set expansion

Like BS, Neural variational set expansion first determines the underlying concept, or topic, 
underlying the query and then ranks entities based on that concept. Our method differs from 
BS because we use a deep generative model with a low dimensional concept representa-
tion, to simulate how a concept may generate a query. Also we use a “distance” (Sect. 5.2) 
between posterior distributions for ranking entities in lieu of bayesian model comparison.

5.1  Inference step 1: concept discovery

Our model (Fig.  2) is as follows: z ∈ ℝ
d is a low dimensional latent gaussian random 

variable representing the concept of a query. z is sampled from a fixed prior distribution 
� =  (�, �2�) , i.e. z ∼ � . The members of  are sampled conditionally independently 
given z. z is mapped via a multi layer perceptron (MLP), called NN(g)

�
 , to g, the p.m.f. of a 

αfx

g
z

π π

Q
NN(g)

θ

αfx

qφ(z|x) qφ(z|Q)

Q
NN(i)

φ

(a) (b)

Fig. 2  The generative model of query generation is on the left and the variational inference network is on 
the right. Small nodes denote probability distributions, gray nodes are observations and the black node � 
is the known prior. NN(g)

�
 transforms z to g and the NN(i)

�
 transforms fx to q�(z|x) . a Generative network. b 

Inference network
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multinomial distribution that generates fx , the features of x. NN(g)

�
 is a neural network with a 

softmax output layer and parameters � . fx ∈ ℤ
F are sampled i.i.d. from p(f |z, �) = NN

(g)

�
(z).6

In other words, the vector fx contains the counts of observed features for x that were 
sampled from g, and g was itself sampled by passing a gaussian random variable through a 
neural network.

Under this deep-generative model a concept vector can simultaneously trigger multiple 
observed features. This allows us to capture the correlations amongst features triggered by 
a concept. For example, the concept of president can simultaneously trigger features 
such as white house, executive order, or airforce one.

In order to infer the latent variable z ideally we should compute p�(z|) , the posterior dis-
tribution of z given the observations  . Unfortunately, this computation is intractable because 
the prior is not conjugate to the likelihood that has a neural network. Another problem is 
that it is unrealistic to assume access to a large set of ESE queries at training time, because 
user’s information needs keep changing, therefore the approach used by Zaheer et al. (2017) 
in DeepSets to discriminatively learn a neural scoring function is impractical for set expan-
sion. For the same reason it is also not possible to learn a single neural network whose input 
is  and which directly approximates p�(z|) . Therefore it is non-trivial to apply the VAE 
framework to ESE. To overcomes these problems we make the assumption that a query  is 
conjunctive in nature, i.e. if entity x1 and x2 are present in  then results that are relevant to 
both x1 and x2 simultaneously should be given a higher ranking than results that are related 
to x1 but not x2 or vice-versa. We implement the conjunction of entities in a query by com-
bining the Product of Experts  Hinton (1999) approach with the Variational Autoencoder 
(VAE) Kingma and Welling (2013) method to approximate p�(z|).

We first map each x to an approximate posterior q�(z|x) via a neural network NN(i)

�
 and 

then we take their product to approximate p�(z|).

The � parameters are estimated by minimizing KL(q(z|x) ∣∣ p(z|x)) as shown in Sect. 5.3.7 
The benefit of the POE approximation is that the posterior approximation q�(.|x) for each 
entity x in  acts as an expert and the product of these experts will assign a high value to 
only that region where all the posteriors assign a high value. Therefore the POE approx-
imation is a way of implementing conjunctive semantics for a query. Another benefit is 
that if q�(.|x) is an exponential family distribution with a constant base measure whose 
natural parameters are the output of NN(i)

�
 , then the product of the distributions 

∏
x q�(⋅�x) 

lies in the same exponential family whose natural parameters are simply the sum of indi-
vidual neural network outputs.8,9 We use NN(i)

�
 to compute the mean and log-variance of 

p�(z|) ≈ q�(z|) ∝
∏

x∈
q�(z|x).

6 Our generative model is inspired by Miao et al. (2016)’s NVDM. They assume that a single latent vari-
able generates only one observation, but we posit that the same latent variable z generates all observations 
in .
7 This is a generalization of Bouchacourt et al. (2017) combining variational approximations of posterior 
distributions since the product of gaussians is a Gaussian distribution.
8 Also notice that the POE approach recommends adding the outputs of the neural networks which is dif-
ferent than concatenating the features for all x in  or naively adding the inputs of the neural network. 
(Appendix 2) gives more details.
9 Recently, Zaheer et al. (2017) gave a theorem that any permutation invariant function of sets must be rep-
resentable as the function of a sum of features of elements of the set. We note that our POE approximation 
also has a similar form and is permutation invariant.
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the gaussian distribution q�(z|x) (3) that we convert to the natural parameters of a Gaussian 
(4). Next, we add the natural parameters of the individual variational approximations �x,Γx 
to compute the parameters �,Γ for q�(z|) (5). Finally, we compute q�(z|) (6).

c(z|�,Γ) is the multi-variate Gaussian distribution in terms of its natural parameters:

5.2  Inference step 2: entity ranking

In order to rank the entities x ∈  , we design a similarity score between the probability 
distributions q�(z|) and q�(z|x) as an efficient substitute for bayesian model comparison. 
We use the distance between precision weighted means � and �x to define our “distance” 
function as

Our inter-distribution “distance” is not a proper distance because it changes as the location 
of both the input distributions is shifted by the same amount. We experimented with more 
standard, reparameterization invariant, divergences and kernels such as the KL-divergence 
and the Probability Product Kernel (Jebara et al. 2004), see (Appendix 4), but we found our 
approach to be faster and more accurate. We believe this is because the regularization from 
the prior that encourages the posteriors to be close to the origin makes shift invariance 
unnecessary.

5.3  Unsupervised training

NVSE is trained in an unsupervised fashion to learn its parameters � and � . Kingma and Well-
ing (2013); Rezende et al. (2014) proposed the VAE framework for learning richly parameter-
ized conditional distributions p�(x|z) from unlabeled data. We follow Kingma and Welling 
(2013)’s reparameterization trick to train a VAE and maximize the Evidence Lower Bound:

During training, we do not have access to any clustering information or side information 
that tells us which entities can be grouped together. Therefore we assume that the entities 
x ∈  were generated i.i.d. The model during training looks the same as Fig. 2 but with one 

(3)�x,Σx = NN
(i)

�
(fx)

(4)�x, Γx = �xΣ
−1
x
, Σ−1

x
.

(5)�, Γ =
∑

x∈ �x,
∑

x∈ Γx.

(6)q�(z|) = c(z|�,Γ)

|Γ|1∕2
(2�)D∕2

exp

(
−
(zTΓz − 2�Tz + �TΓ−1�)

2

)
.

(7)score
NVSE

(, x) = −||� − �x||2.

(8)Eq�(z|x)[log p�(x|z)] − KL(q�(z|x)||p(z)).
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difference: Q is a singleton set of just one entity.10 Note that our learning method requires 
no supervision in contrast to methods like Deep Sets which require cluster information, or 
Neural Collaborative filtering methods which require a large dataset of user interactions.

6  Interpretability

We introduce a general approach for interpreting ESE models based on query rationales 
to explain the latent concept the model discovered and result justifications to provide evi-
dence for why the system ranked an entity highly. Based on query rationales and result 
justifications, users can add weights to entities in a query to tell the system what aspects of 
the query to focus on or ignore.

6.1  Query rationale

A Query Rationale is a visualization of the latent beliefs of the ESE system given the 
query  . Given  , we construct a feature-importance-map � that measures the relative 
importance of the features in fx and we show the top features according to � as “Query 
Rationales”. Recall that the jth component of fx , associated with entity x, measures how 
often the jth feature co-occurred with x. We now present how we construct � for NVSE 
and the baselines.

For BM25, � is simply ̄f . In BS, � is the weights from (11b): for each jth component 
of fx,

The benefit of generative methods such as BS and NVSE is that for them query rationales 
can be computed as a natural by-product of the generative process instead of as ad-hoc 
post-processing steps. For NVSE, ideally � should be the posterior distribution p�(f |) . 
Since this is intractable we approximate it by sampling the inference network:

We further approximate the expectation with a single sample of the mean of q�(z|) . 
Finally the feature importance map for NVSE is:

Because Word2Vecf finds the nearest-neighbor between entity embeddings, which are pro-
duced through a complicated learning process operating on the whole text corpus, it does 
not provide a natural way to determine the importance of a single sentence and therefore 
it is not possible to say what was the effect of a particular sentence on the query results. 
Similarly, since the SetExpan method works by extracting context features and iteratively 
expanding this feature set, it is not possible to determine the effect of a single sentence on 
the final search results.

𝛾[j] = log
�̃�[j]𝛽[j]
𝛼[j]𝛽[j]

.

p�(f |) = Ep� (z|)[p�(f |z,)] ≈ Eq�(z|)[p�(f |z)].

� = p�(f |E[q�(z|)]).

10 More informally, we remove the plates from Fig. 2.
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6.2  Result justifications

We define result justifications as sentences in x that justify why an entity was ranked 
highly for a given query. Ranking the sentences that mention an entity is similar to rank-
ing entities in  . Just as we create a feature vector for each x, we create a feature vector 
for each sentence in x and use the same scoring function to rank the sentences based on 
the query. While computing a score for entity x based on a query, we also score each sen-
tence in x . Our approach to generate interpretable result justifications is agnostic to ESE 
methods with the caveat that for methods like Word2Vecf and SetExpan this will require 
retraining or reindexing over the corpus for each query. Our approach will not be feasible 
for such methods.

6.3  Weighted queries

Any recommendation system can occasionally fail to provide good results for a query. To 
improve a system’s responses in such cases we enable users to guide NVSE ’s results by 
using entity weights to influence the posterior distribution over topics.

If a user provides weights � = {�x ∣ x ∈ } , we compute the query features as

The above formulae have an intuitive explanation: when an entity has a higher weight then 
the precision over the concepts activated by that entity is increased according to the mag-
nitude of the weight, and the value of the precision weighted mean is also weighted by the 
user supplied weights. In turn, an entity with zero weight has zero effect on the final search 
result and entities with a high negative weight return entities diametrically opposite to that 
entity with higher confidence.

Weights can be applied to other methods as well. BM25 can multiply each fx by x’s 
weights when computing f̄ , and Word2Vecf can use a weighted average. It is not straight-
forward to incorporate weights in BS and SetExpan systems. One possible way is to use 
bootstrap resampling of the query entities according to a softmax distribution over entity 
weights, but bootstrapping makes the system non-deterministic and therefore even more 
opaque for a user. Also bootstrap resampling requires multiple query executions and it is 
not straight-forward to combine the outputs of different search queries; therefore we do not 
advocate for bootstrapping.

7  Comparative experiments

We test the hypothesis that NVSE can help bridge the gap between advances in IR and real 
world use cases. We use human annotators on Amazon Mechanical Turk (AMT) to deter-
mine whether NVSE finds more relevant entities than our baseline methods in a real world, 
automatically generated KG.

(9)�,� , Γ,� =
∑

x∈ �x�x,
∑

x∈ |�x|Γx.
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7.1  Dataset

TinkerBell (Al-Badrashiny et al. 2017) is a KG construction system that achieved top per-
formance in TAC-KGP2017 evaluation.11 We used it as our automatic KG. For each entity 
e in TinkerBell we create e by concatenating all sentences that mention e and remove the 
top 100 most frequent features in the corpus from e to clean stop words. Tinkerbell was 
constructed from the TAC KGP 2017 evaluation source corpus, LDC2017E25, that con-
tains 30K English documents and 60K Spanish and Chinese documents.12 Half of the Eng-
lish documents come from online discussion forums and the other half from news sources, 
e.g. Reuters or the New York Times. Our experiments only use the 77,845 EDL entities 
within TinkerBell that are assigned the type Person. We use these links to create a map 
from DBPedia categories to entities in TinkerBell, say M. Each entity in TinkerBell is asso-
ciated to spans of characters that mention that entity. We tokenize and sentence segment 
the documents in LDC2017E25 and associate sentences to each entity corresponding to 
mentions. In the end we get 344,735 sentences associated to the 77K entities. The median 
number of sentences associated to an entity is 1 and the maximum number of sentences is 
4638 for the Barack Obama entity.13 This is a good example of how automatic KGs differ 
from manually curated KGs. In TinkerBell most of the entities appear in only a single sen-
tence so only a single fact may be known about them. In contrast KGs like FreeBase and 
DBPedia have a more uniform coverage of facts for entities present in them. Another dif-
ference is that relational information such as ancestry relations between entities are much 
more noisy in an automatically generated KB than in DBPedia which relies on manually 
curated information present in Wikipedia.

7.2  Implementation details

We prune the vocabulary by removing any tokens that occur less than 5 times across all 
entities. We end up with, F= 105448, V = 61311 , D = 24661 , and V� = 19476 . We used 
BM25 implemented in Gensim (Řehůřek and Sojka 2010) and we implemented BS our-
selves. We choose � = 0.5 , out of 0, 0.5, or 1, after visual inspection. We used Word2Vecf 
and SetExpan codebases released by the authors.14 For NVSE, we set d= 50 , � = 1 . The 
generative network NN(g)

�
 does not have hidden layers and the inference network NN(i)

�
 has 

1 hidden layer of size 500 with a tanh non-linearity and two output layers for the mean �x 
and log of the diagonal of the variance Σx . We use a diagonal Σx.15 For Word2Vecf, we 
used d = 100 to use the same number of parameters per entity as in NVSE. We trained 
with default hyperparameters for 100 iterations. We used SetExpan with the default hyper-
parameters as well except that we limited the number of maximum iterations to 3 since we 
only needed top 4 entities for our experiments.

11 Tinkerbell constructed a KG from LDC2017E25 that contains 30K English documents. Half of them 
are from online forums and the other half from Reuters and NYT. We focused on the 77,845 entities from 
English documents appearing in 344,735 sentences. 25,149 entities were also linked to DBPedia.
12 https ://tac.nist.gov/2017/KGP/data.html.
13 The mean is 4.43, the standard deviation is 29.19, the minimum number of sentences for an entity is 1, 
the maximum number of sentences is 4638, and the median is 1 (44,317 entities).
14 https ://bitbu cket.org/yoavg o/word2 vecf, https ://githu b.com/micke ystro ller/SetEx pan.
15 Training NVSE on 1 Tesla K80 using the Adam optimizer with learning rate 5e−5 and minibatch size 64 
took 12 h.

https://tac.nist.gov/2017/KGP/data.html
https://bitbucket.org/yoavgo/word2vecf
https://github.com/mickeystroller/SetExpan
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7.3  Experimental design

Prior work typically evaluates ESE on a small number of queries, constituting the most 
frequent entities, e.g. Ghahramani and Heller (2006) reported results for 10 queries with 
highly cited authors and Shen et al. (2017) used 20 test queries created of 2000 most fre-
quent entities in Wikipedia. However in automatic KGs, most entities are mentioned only 
a few times. For example 60% of the entities in TinkerBell are mentioned once. We are 
primarily interested in unbiased evaluation over such entities, therefore we stratified the 
evaluation queries into three types.

The 1st type contains entities mentioned in only 1 sentence, the 2nd contains entities 
appearing in 2–10 sentences, and the 3rd contains entities mentioned in 11–100 sentences. 
We also stratified queries based on whether they had 3, or 5 entities. For each query type 
we randomly generate 80 queries by first sampling 80 Wikipedia categories and then sam-
pling entities from those categories that were also part of the TinkerBell KG. This results 
in 480 queries. See Table 1 for examples.

For each query, we showed the names and first paragraphs from the Wikipedia abstracts 
of the query’s entities, to help the AMT workers disambiguate entities unfamiliar to them. 
Then we showed the workers the top 4 entities returned by each system. Each resultant 
entity was shown with up to 3 justification sentences.16 Since SetExpan and Word2Vecf do 

Table 1  Examples of randomly created queries

Category Entities

(1 Sent./Ent.) American Jazz Singers Paula West, Natalie Cole, Chaka Khan
(2–10 Sent.) Australian Major Golfers Marc Leishman, David Graham, James Nitties
(11–100 Sent.) The Apprentice (U.S) Contestants Maria, Rod Blagojevich, Dennis Rodman, 

Joan Rivers, Piers Morgan

Table 2  The number of times a system was ranked 1st over 80 queries compared to other systems in the 
same group

Ties were allowed so some rows may not sum to 80. Bold highlights the system with the most 1st in its 
group. Extended results with second and third place rankings of the system are shown in Table 5

Ents. in query Sents. per Ent. Group 1 Group 2

NVSE BM25 BS NVSE SetEx W2Vecf

3 1 27 38 15 51 14 15
2–10 29 25 26 49 13 18
11–100 35 23 22 44 10 26

5 1 38 25 17 58 19 3
2–10 40 27 13 53 19 8
11–100 24 33 24 52 11 17
Total 193 171 117 307 86 87

16 Figure 3 in (Appendix 5) illustrates the AMT interface.
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not return justifications, we used NVSE to extract justifications for their results. We asked 
workers to rank the systems between 1, the best system, to 3, the worst; and we allowed 
for ties. The annotators found it difficult to compare results from 5 systems at a time so we 
split our evaluation into two groups. Group 1 compared NVSE to BS and BM25, and group 
2 compared NVSE to SetExpan and Word2Vecf. We randomized the placement of the lists 
so that the workers could not figure out which system created which list.

7.4  Results

Table 2 shows the number of times the annotators ranked each system as the best out of the 
80 queries. Over all queries, NVSE returned better results compared to the 4 baselines sys-
tems. It performed best with 5 entities in the query where each entity was only mentioned 
up to 10 times in the corpus. This shows that NVSE is able to discern better quality topics 
from multiple entities with sparse data. Extended results showing second and third place 
rankings of the systems are given in Table 5 in the appendix which show that in cases that 
when NVSE does not rank first it is typically chosen as the second ranking system.

The IR method BM25 was the strongest baseline, outperforming BS and SetExpan, and 
even NVSE in two settings. We believe that this is because of the low-resource conditions 
of our evaluation where ad-hoc IR methods can have an advantage. Another reason why 
BM25 worked very well in our evaluation was because of the lack of auxilliary signals 
such as entity inter-relations and entity links and because all the entities were of person 
type. This makes our task different from the entity list completion (ELC) task  (BALOG 
2009) and a bit simpler for methods that focus heavily on lexical overlap. Another dif-
ference between the ESE task and the ELC task was that in the ELC task a descriptive 
prompt describing the query was also given to the users while evaluating the relevance of 
the returned results whereas no such prompt was given in the ESE task. We also found that 
sometimes BM25 was rated highly because it returned results that were highly relevant 
to a single query entity instead of being topically similar to all entities. For example, on 
the query associated with “The Apprentice Contestants” BM25’s results solely focused on 
Dennis Rodman, but NVSE tried to infer a common topic amongst entities and returned 
generic celebrities which annotators did not prefer.

On entities with little data, Word2Vecf and SetExpan perform poorly. Word2Vecf 
requires large amounts of data for learning useful representations  (Altszyler  et  al. 2016) 
which explains why it performs poorly in our evaluation. The SetExpan algorithm directly 
uses context features extracted from the mentions of an entity, and returns entities with 
the same context features. This approach can overfit with low data. Even though SetEx-
pan uses an ensembling method to reduce the variance of the algorithm, we believe using 
context-features causes overfitting when an entity appears in only a few sentences. Lastly, 
we believe that BS suffers because its impoverished generative model has neither non-line-
arities, nor low-dimensional topics for modeling correlations amongst tokens.

8  Analyzing interpretability

We now attempt to understand the similarity relations encoded in NVSE ’s internal concept 
representations to understand what it is learning. We also provide examples of how query 
rationales and query weights can help users fine-tune their queries.
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8.1  Understanding the concept space

To gain some insight into the distribution over concepts inferred by NVSE we determined 
the top 10 words activated by individual dimension of z by computing NN(g)

�
(ej) where ej 

is a one-hot vector in ℝ50 . Table 3 shows the top 10 words for selected components of z. 
We can easily recognize that dimensions 3, 33 and 37 of z represent finance, sports, and 
entertainment. Even though we did not constrain z to be component-wise interpretable, this 
structure naturally emerged after training.

8.2  Weights and query rationale

Table 4 depicts how the query rationale returned by NVSE changes in response to entity 
weights. In the first column the query is {Abu Bakr Baghdadi} and the query rationale tells 
us that NVSE focuses on iraq, baghdadi etc. The second column shows a different query 
{Osama Bin Laden} and the query rationales changes accordingly to pakistani and osama. 
The third and fourth column show rationales when the weights on “Laden” and “Bagh-
dadi” are varied. When more weight is put on “Laden” then the query rationales contain 
more features that are associated to him, and when more weight is put on “Baghdadi”, then 
features such as “islamic” which is a token from his organization are returned. The last 
column shows an interesting configuration where a user is effectively asking for results that 
are similar to “Baghdadi” but dissimilar to “Laden” and the feature for kurdish gets acti-
vated. Since the system returns results in under 100ms, the user can fine-tune her query in 
real-time with the help of these query rationales.

We give one more example of the utility of negative weights: When  = {Brady} , 
NVSE ’s rationale is [brady, game, patriots, left, knee, field, tackle], indicating that NVSE 
associated the “Brady” entity with Tom Brady who is a member of the Patriots football 
team. When we added “Wes Welker” to  with a negative weight, the query rationale 
changed to [brady, game, left, tackle, knee, back, field]. Since Wes is a Patriots receiver 
who received a negative weight in the query, NVSE deactivated the patriots feature and 
activated the tackle feature, opposite to a receiver.

9  Conclusion

We introduced NVSE as a step towards making advances in entity set expansion useful to 
real-world settings. NVSE is a novel unsupervised approach based on the VAE framework 
that discovers related entities from noisy knowledge graphs. NVSE ranks entities in a KG 
using an efficient and fast scoring function (7), ranking 80K entities on a commodity laptop 
in 100 ms.

Our experiments demonstrated that NVSE can be applied in real-world settings where 
automatically generated KGs are noisy. NVSE outperformed state of the art ESE systems 
and other strong baselines on a real world KG. We also presented a flexible approach to 
interpret ESE methods and justify their recommendations.

In future work, we will extend our work by improving our model using more powerful 
auto-encoders such as the Ladder VAE (Sønderby et al. 2016), secondly we will experi-
ment with the use of side information such as links from a KG through the use of Graph 
Convolutional Networks  (Kipf and Welling 2017). Third, we will like to quantitatively 
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measure how query rationales and justifications help users in accomplishing their search 
task. Finally, we will incorporate confidence scores from the KG in our model. Although 
there may be future work to improve our ESE method, we believe that NVSE serves as a 
significant step towards utilizing KGs and semantics for information retrieval and under-
standing in real world settings.

Funding Funding was provided by Defense Advanced Research Projects Agency (Grant No. 
FA8750-13-2-001).

Appendix 1: IDF computed for BM25

BM25 is computed based on the average total count of a feature in the entire corpus and 
IDF[i] is the inverse document frequency of the ith feature amongst all documents, which 
is defined as

Appendix 2: Computing product of experts for deep‑exponential 
families

In this section we show how the product of experts can be computed simply by adding the 
output of the neural networks in the special case that the variational approximation has the 
following form:

where �(z) are the features of z. If h is constant—which is true for a number of exponential 
family distributions such as the Bernoulli, Exponential, Pareto, Laplace, Gaussian, Gamma 
and the Wishart distributions—then:

In turn,

This shows that the product of experts can be computed simply by summing the outputs 
of the neural network activations for such deep-exponential families with constant base 
measure.

Appendix 3: Bayesian sets

The Bayesian Sets algorithm ranks the elements in ⧵ according to the ratio of two 
probabilities:

IDF[i] = log
X − DF[i] + 0.5

DF[i] + 0.5

DF[i] =
∑

x∈ �[fx[i] > 0].

(10)q�(z�x) ∝ h(z) exp(⟨�(z), NN
(i)

�
(x)⟩)

q�(z�x) ∝ exp(⟨�(z), NN
(i)

�
(x)⟩).

�

x∈
q�(z�x) ∝ exp(⟨�(z),

�

x∈
NN

(i)

�
(x)⟩).
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Instead of assuming the commonly used Beta-Binomial distribution we may assume that 
p(x|z) is a product of independent Poisson distributions with Gamma conjugate priors. I.e. 
p(x�z) = ∏

k

z
xk
k

xk
 . The conjugate prior on z is a product of Gamma distributions,

Let f (xk, �k, �k) =

The Bayesian Sest score under these conditions is

Where �̃�k = 𝛼k +
∑

x∈ xk and 𝛽k = 𝛽k + Q . Note that if �̃�k = 𝛼k then f (xk ,�̃�k ,𝛽k)
f (xk ,𝛼k ,𝛽k)

= (
1+𝛽k

1+𝛽k+D
)xk 

which means that features that occur in x that did not occur in  are penalized based on the 
number of times the feature appeared. Therefore, the Gamma-Poisson distribution is a 
good approximation only when quantitative differences in the number of times a feature 
appears are important.

Finally we may assume that the components of x were sampled from conditionally inde-
pendent gaussian distributions with unknown mean and precisions. I.e. p(x|�, �) =

and p(�, �|�, �, �, �) =

In the following formulaes we omit the susbscript k for convenience.

score(x) =
p(x|)
p(x)

=
Ep(z|)[p(x|z)]
E�(z)[p(x|z)]

p(z|�, �) =
∏

k

�k
�k

Γ(�k)
zk

�k−1 exp(−�kzk).

(
xk + �k − 1

xk

)(
1 −

1

1 + �k

)�k
(

1

1 + �k

)xk

.

score(x) =
∏

k

f (xk, �̃�k, 𝛽k)

f (xk, 𝛼k, 𝛽k)

∏

k

√
�

2�
exp(−(xk − �k)

2�k)

�

k

�k
�k
√
�k

Γ(�k)
√
2�

�k
�k−

1

2 exp(−�k�k) exp

�
−
�k�k(�k − �k)

2

2

�
.

x̄ =
1

Q

∑

x∈
x

�̃� =
𝜆𝜌 + Qx̄

𝜆 + Q

�̃� = 𝜆 + Q

�̃� = 𝛼 + Q∕2

𝛽 = 𝛽 +
1

2

∑

x∈
(x − x̄)2 +

Q𝜆

Q + 𝜆

(x̄ − �̃�)2

2
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The Bayesian Sets score is the ratio of two t distribution values

Now the value of t�(x|a, b) where a is the location parameter and b is the scale parameter 
is:

In order to use this distribution with count data, it is important to use some variance 
stabilizing transform, and then perform mean and variance normalization to preprocess all 
the count features. In this way we can set the priors �̃�k to be 0 and �k can be set uniformly to 
some small number such as 2 and alphak, �k can be chosen to be 2, 1 respectively.

Appendix 3.1 Binarizing feature counts

BS binarizes the feature vector fx as f ′
x
 via thresholding:

where � ∈ ℝ is a hyperparameter. BS’s scoring function becomes 

Appendix 4: Ranking methods

A standard function for computing the distance between distributions is the KL-divergence. 
Another possibility to compute the distance between distributions is to compute the symmetric 
version of the KL-divergence. Another standard method for computing the similarity between 
two probability distributions is to compute the probability product kernel (PPK) between two 
distributions Jebara et al. (2004); i.e.

score(x) =
∏

k

t2�̃�k

(
xk ∣ �̃�k,

𝛽k(�̃�k+1)

�̃�k �̃�k

)

t2𝛼k

(
xk ∣ 𝜌k,

𝛽k(𝜆k+1)

𝛼k𝜆k

)

t�(x�a, b) =
Γ
�

�+1

2

�

√
b��Γ

�
�

2

�
�
1 +

(x − a)2

b�

�−
�+1

2

f �
x
[j] = �[fx[j] > 𝜇[j] + 𝜆𝜎[j]]

𝜇[j] =

∑
x∈ fx[j]

X
, 𝜎2[j]=

∑
x∈ (fx[j] − 𝜇[j])2

X
,

(11a)score
BS

(,x) =
F∑

j=1

(
log

�̃�[j]𝛽[j]
𝛼[j]𝛽[j]

)
f �
x
[j]

(11b)�̃�[j] = 𝛼[j] +
∑

x∈
f �
x
[j]

(11c)𝛽[j] = 𝛽[j] + Q −
∑

x∈
f �
x
[j].
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In the special case that q�(z|) and q�(z|x) have the special deep-gaussian form then the 
KL divergence as well as the inner product can be computed in closed form. KL Diver-
gence between two distributions normal distributions p1, p2 with parameters (�1,Σ1) and 
(�2,Σ2) is:

and PPK is

In the further special case that �2 = �,Σ2 = � then the KL divergence simplifies to:

However, we propose here a simple way to compute the distance between two normal dis-
tributions. If �1,Σ1 and �2,Σ2 are the mean and variance of two normal distributions, p1, p2 
then we use the following distance

This metric can be implemented as a single matrix multiplication while KL divergence 
and PPK cannot. Intuitively this distance gives higher weightage to those dimensions where 
the variance of the either the distributions is lower. In preliminary experiments we found 
this distance to be superior to KL divergence and PPL and we use this distance function in 
our experiments. We believe that the regularization from the gaussian prior that encourages 
the posterior distributions to be close to the origin make shift invariance unnecessary.

Appendix 5: Mechanical Turk HIT interface and extended results

Table 5 shows the second and third place rankings of the systems and extends the results 
shown in Table 2.

⟨q�(z�), q�(z�x)⟩ = �z

q�(z�)q�(z�x)dz

KL(p1||p2) =
1

2

(
tr(Σ−1

2
Σ1) + (𝜇1 − 𝜇2)

⊤Σ−1
2
(𝜇1 − 𝜇2) − d + log

det(Σ2)

det(Σ1)

)
.

exp(
−(�1 − �2)

T (Σ1 + Σ2)
−1(�1 − �2)

2
− log det((Σ1 + Σ2)))

KL(p1||p2) =
1

2

(
tr(Σ1) + �T

1
�1 − d − log det(Σ1)

)
.

d(p1, p2) = ||�1Σ
−1
1

− �2Σ
−1
2
||2 = ||�1 − �2||2
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