
Vol:.(1234567890)

Information Retrieval Journal (2019) 22:232–255
https://doi.org/10.1007/s10791-018-9342-1

1 3

KNOWLEDGE GRAPHS AND SEMANTICS IN TEXT ANALYSIS
AND RETRIEVAL

Neural variational entity set expansion for automatically
populated knowledge graphs

Pushpendre Rastogi1 · Adam Poliak1 · Vince Lyzinski1 · Benjamin Van Durme1

Received: 5 May 2018 / Accepted: 15 October 2018 / Published online: 25 October 2018
© Springer Nature B.V. 2018

Abstract
We propose Neural variational set expansion to extract actionable information from a noisy
knowledge graph (KG) and propose a general approach for increasing the interpretabil-
ity of recommendation systems. We demonstrate the usefulness of applying a variational
autoencoder to the Entity set expansion task based on a realistic automatically generated
KG.

Keywords Set expansion · Cold start recommendation · Content based recommendation ·
Variational autoencoder · Product of experts (POE) · Unsupervised learning

1 Introduction

Imagine a physician trying to pin-point a specific diagnosis or a journalist investigating
abuses of governmental power. In both scenarios, a domain expert may try to find answers
based on prior known, relevant entities—either a list of diagnoses of with similar symp-
toms that a patient is experiencing or a list of known conspirators. Instead of manually
looking for connections between potential answers and prior knowledge, a searcher would
like to rely on an automatic Recommender to find the connections and answers for them,
i.e. related entities.

In the information retrieval (IR) community, Entity set expansion (ESE) is the estab-
lished task of recommending entities that are similar to a provided seed of entities.1 ESE
has been applied in Question Answering (Wang et al. 2008), Relation Extraction (Lang and

In: Joint Proceedings of the First International Workshop on Professional Search (ProfS2018);
the Second Workshop on Knowledge Graphs and Semantics for Text Retrieval, Analysis, and
Understanding (KG4IR); and the International Workshop on Data Search (DATA:SEARCH18). Co-
located with SIGIR 2018, Ann Arbor, Michigan, USA—12 July 2018, published at http://ceur-ws.org.

 * Pushpendre Rastogi
 pushpendre@jhu.edu

1 Johns Hopkins University, Baltimore, USA

1 We refer to the items in the seed as entities but they can also be referred to as items or elements.

http://orcid.org/0000-0003-1573-3066
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-018-9342-1&domain=pdf
http://ceur-ws.org

233Information Retrieval Journal (2019) 22:232–255

1 3

Henderson 2013) and Information Extraction (He and Grishman 2015) settings. The physi-
cian and journalist in our example can not fully take advantage of IR advances in ESE for
two main reasons. Recent advances (1) often assume access to a clean, large Knowledge
Graph and (2) are uninterpretable.

Many advanced ESE algorithms rely on manually curated, clean Knowledge Graphs
(KG), e.g. DBpedia (Auer et al. 2007) and Freebase (Bollacker et al. 2008). In real-
world settings, users rarely have access to clean KGs, and instead may rely on automat-
ically generated KGs. Such KGs are often noisy because they are created from compli-
cated and error-prone NLP processes—illustrated in Fig. 1. For example, automatic KGs
may include duplicate entities, associations (relations) between entities may be missing,
and entities with similar names may be incorrectly disambiguated. These imperfections
prevent machine learning approaches from performing well on automatically generated
KGs. Furthermore, many ESE algorithms degrade as the sparsity and unreliability of KGs
increases (Pujara et al. 2017; Rastogi et al. 2017). Advanced ESE methods, especially those
that rely on neural networks, are uninterpretable (Mitra and Craswell 2017). If a physician
can not explain decisions, patients may not trust her and if a journalist can not demonstrate
how a certain individual is acting unethically or above the law, a resulting article may lack
credibility. Furthermore, uniterpretability may limit the applications of advancements in
IR, and more broadly artificial intelligence, as humans “won’t trust an A.I. unless it can
explain itself.”2

We introduce Neural variational set expansion (NVSE) to advance the applicability of
ESE research. NVSE is an unsupervised model based on Variational Autoencoders (VAEs)
that receives a query, uses a Bayesian approach to determine a latent concept that unifies
entities in the query, and returns a ranked list of similar entities based on the previously
determined unified latent concept. NVSE does not require supervised examples of queries
and responses, nor pre-built clusters of entities. Instead, our method only requires sen-
tences with linked entity mentions, i.e. spans of token associated with a KG entity, often
included in automatically generated KGs.

NVSE is robust to noisy automatically generated KGs, thus removing the need to rely
on manually curated, clean KGs. We evaluate NVSE on the ESE task using Tinkerbell (Al-
Badrashiny et al. 2017), an automatically generated KG that placed first in the TAC KGP
shared task. Unlike how ESE has been used to improve entity linking for KG construc-
tion (Gottipati and Jiang 2011), our goal is the opposite: we leverage noisy automatically
generated KGs to perform ESE. NVSE is interpretable; it outputs query rationales—a
summarization of features our models associates with the query—and result justifica-
tions—an ordered list of sentences from the underlying corpus that justify why our method

Fig. 1 Our Entity set expansion (ESE) system assumes a corpus that has been labeled with entity mentions
which are clustered via cross-document co-reference and linking to a knowledge base; together known as
entity discovery and linking (EDL). Given a query containing Obama, Bush, and Clinton, the ESE system
returns other U.S. presidents found in the KG

2 https ://nyti.ms/2hR1S 15.

https://nyti.ms/2hR1S15

234 Information Retrieval Journal (2019) 22:232–255

1 3

returned that entity. Query rationales and result justifications are reminiscent of annotator
rationales (Zaidan et al. 2007).

To our knowledge this is the first unsupervised neural approach for ESE as opposed to
neural methods for supervised collaborative filtering (Lee et al. 2017). All code and data is
available at https ://githu b.com/se4u/nvse and a video demonstration of the system is avail-
able at https ://youtu .be/sGO_wvuPI zM.

2 Related work

2.1 Methods dependent on external information

Since automatically generated KGs can be noisy, some methods utilize information beyond
entity links and mentions to aid ESE. Paşca and Van Durme (2007) use search engine
query logs to extract attributes related to entities and Paşca and Van Durme (2008) extract
sets of instances associated with class labels based on web documents and queries. Pan-
tel et al. (2009) use a large amount of web data as they apply a learned word similarity
matrix extracted from a 200 billion word Internet crawl to the ESE task. Both He and Xin
(2011)’s SEISA system and Tong and Dean (2008)’s Google Sets use lists of items from
the Internet and try to determine which elements in the lists are most relevant to a query.
Sadamitsu et al. (2011) rely on given topic information about the queried entities to train a
discriminative system. More recent approaches also use external information. Zaheer et al.
(2017) use LDA Blei et al. (2003) to create word clusters for supervision, and Vartak et al.
(2017) use manual annotations by Twitter users. Zheng et al. (2017) uses inter-entity links
in knowledge graphs which are very sparse in automatically generated KGs (Pujara et al.
2017; Rastogi et al. 2017). All of these approaches use more information than just entity
links and mentions.

2.2 Methods for comparing entities

Set Expander for Any Language (SEAL) (Wang and Cohen 2007) and its variants (Wang
and Cohen 2008, 2009) learn similarities between new words and example words using
methods like Random Walks and Random Walks With Restart. Similar to Lin (1998)’s
using cosine and Jaccard similarity to find similar words, SEISA uses these metrics to
expand sets. These methods are limited to only extracting words that coocur. Because they
are applied on web-scale data, SEAL and SEISA assume entities will eventually coocur.
This assumption might not be valid in an underlying corpus used to automatically gener-
ate a KG. In contrast to those approaches, NVSE finds similar entities based on a kernel
between distributions.

2.3 Queries as natural language

In the INEX-XER shared task, queries were represented as natural language questions
(Demartini et al. 2010). Metzger et al. (2014) and Zhang et al. (2017) propose methods to
extract related entities in a KG based on a natural language query. This scenario is similar
to a person interacting with a system like Amazon Alexa. However, our setup better reflects

https://github.com/se4u/nvse
https://youtu.be/sGO_wvuPIzM

235Information Retrieval Journal (2019) 22:232–255

1 3

users searching for similar entities in a KG as it is more efficient for users to type entities of
interest instead of natural language text.

2.4 Neural collaborative filtering

We are not the first to incorporate neural methods in a recommendation system. Recently,
He et al. (2017) and Lee et al. (2017) presented deep auto-encoders for collaborative fil-
tering. Collaborative Filtering assumes a large dataset of previous user interactions with
the search engine. For many domains it is not possible to create such a dataset since new
data is added everyday and queries change rapidly based on different users and domains.
Therefore, we propose the first neural method which does not use supervision for Entity set
expansion.

3 Notation

Let  be the corpus of documents and  be the vocabulary of tokens that appear in  .
We define a document as a sequence of sentences and we define a sentence as a sequence
of tokens. Let  be the set of entities discovered in  and we refer to its size as X . Each
entity x ∈  is linked to the tokens that mention x.3 Let  ′ be the set of tokens linked to
any x ∈  , and let x be the multiset of sentences that mention x in the corpus. For exam-
ple, consider an entity named “Batman” and a document containing three sentences {Bat-
man is good., He is smart. Life is good.}. “Batman” is linked to tokens Batman and He,
 � = {Batman, He} , and Batman = {Batman is good., He is smart.}.

In ESE, a system receives query  —a subset of —and has to sort the elements
remaining in  = ⧵ . The elements that are most similar to  should appear higher in
the sorted order and elements dissimilar to  should be ranked lower.

4 Baseline methods

Before introducing NVSE, we describe the four baselines systems: BM25, Bayesian Sets,
Word2Vecf and SetExpan. We do not compare to DeepSets (Zaheer et al. 2017), as it is a
supervised method that requires entity clusters.

For each x, we create a feature vector fx ∈ ℤ
F from x , by concatenating three vectors

that count how many times (1) a token in V appeared in x (2) a document in  men-
tioned x and (3) a token in  ′ appeared in x . Thus, F = V + D + V�.

4.1 BM25

Best Match 25 (BM25) is “one of the most successful text-retrieval algorithms” (Robertson
and Zaragoza 2009).4 BM25 ranks remaining entities in  according to the score function

3 We ignore confidence scores that entity linking systems often assign to a link because confidence scores
will prevent us from using a multinomial distribution to model a document as a bag-of-words.
4 Lucene replaced tf-idf with BM25 as its default algorithm: https ://issue s.apach e.org/jira/brows e/LUCEN
E-6789.

https://issues.apache.org/jira/browse/LUCENE-6789
https://issues.apache.org/jira/browse/LUCENE-6789

236 Information Retrieval Journal (2019) 22:232–255

1 3

where fx[j] denotes the j-th feature value in fx , f̄ is the sum of fx∀x ∈  and � is the indi-
cator function. k1 and b are hyperparameters that commonly set to 1.5 and 0.75 (Man-
ning et al. 2008). L̄ is the average total count of a feature in the entire corpus and IDF[i] is
the inverse document frequency of the ith feature (Appendix 1).

4.2 Bayesian sets

Ghahramani and Heller (2006) introduced the Bayesian Sets (BS) method which converts
ESE into a bayesian model selection problem. BS compares the probabilities that the query
entities are generated from a single sample of a latent variable z ∈ ΔF with the probability
that the entities were generated from independent samples. ΔF is the F − 1 dimensional
probability simplex. Note that z has the same dimensionality as the observed features.
Given  and � , the prior distribution of z, BS infers the posterior distribution of z, p(z|) ,
and computes the following score

Ghahramani and Heller (2006) computed scoreBS in close form by selecting the conditional
probability, p(x|z), from an exponential family distribution and setting � to be its conjugate
prior. They showed that if p(x|z) is multivariate Bernoulli then BS requires a single matrix
multiplication (Appendix 3) and we use this setting for our experiments.

4.3 Word2Vecf

Levy and Goldberg (2014) generalize Mikolov et al. (2013)’s Skip-Gram model as Word-
2Vecf to include arbitrary contexts. We embed entities with Word2Vecf by using the entity
IDs as words5 and the tokens in the sentences mentioning those entities as contexts. Note
that all tokens in the sentence, except for some stop words, are used as contexts and not just
co-occurrent entities. We rank the entities in the order of their total distance to the entities
in the query set as

Here, vx represents the L2-normalized embedding for x.

score
BM

(, x) =
F�

i=1

IDF[i]fx[i]f̄[i](k1 + 1)

fx[i]+k1(1−b+b
∑

j fx[j]∕L̄)
,

(1)score
BS

(, x) = log
Ep(z|)[p(x|z)]
E�(z)[p(x|z)]

.

(2)score
W2V

(, x) = −
∑

x̃∈
(vx − vx̃)

2.

5 Converting entity mentions to entity IDs allows us to overcome issues related to embedding multi-word
expressions as explained in Poliak et al. (2017).

237Information Retrieval Journal (2019) 22:232–255

1 3

4.4 SetExpan

Shen et al. (2017) introduce SetExpan, a SOTA framework combining context feature
selection with ranking ensembles, for set expansion. SetExpan outperformed other SE
methods such as SEISA in their evaluation. SetExpan represents entities by the contexts
that they are mentioned in. For example, the context features for Batman from Sect. 3 will
be {__ is good, __ is smart}. The contexts are used to create a large feature vector which
can be used to compute the inter-entity similarity. The authors argue that using all possible
features for computing entity similarity can lead to overfitting and semantic drift. To com-
bat these problems SetExpan builds the entity set iteratively by cycling between a context
feature selection step and an entity selection step. In context feature selection, each context
feature is assigned a score based on the set of currently expanded entities. Based on these
scores, the context-features are reranked and the top few context features are selected. The
entity selection proceeds by bootstrap sampling of the chosen context features and using
those features to create multiple different ranked lists of entities. Multiple different ranked
lists are finally combined via a heuristic method for ensembling different ranked lists to
create a new set of expanded entities. This process is repeated to convergence to get the
final list of expanded entities.

5 Neural variational set expansion

Like BS, Neural variational set expansion first determines the underlying concept, or topic,
underlying the query and then ranks entities based on that concept. Our method differs from
BS because we use a deep generative model with a low dimensional concept representa-
tion, to simulate how a concept may generate a query. Also we use a “distance” (Sect. 5.2)
between posterior distributions for ranking entities in lieu of bayesian model comparison.

5.1 Inference step 1: concept discovery

Our model (Fig. 2) is as follows: z ∈ ℝ
d is a low dimensional latent gaussian random

variable representing the concept of a query. z is sampled from a fixed prior distribution
� =  (�, �2�) , i.e. z ∼ � . The members of  are sampled conditionally independently
given z. z is mapped via a multi layer perceptron (MLP), called NN(g)

�
 , to g, the p.m.f. of a

αfx

g
z

π π

Q
NN(g)

θ

αfx

qφ(z|x) qφ(z|Q)

Q
NN(i)

φ

(a) (b)

Fig. 2 The generative model of query generation is on the left and the variational inference network is on
the right. Small nodes denote probability distributions, gray nodes are observations and the black node �
is the known prior. NN(g)

�
 transforms z to g and the NN(i)

�
 transforms fx to q�(z|x) . a Generative network. b

Inference network

238 Information Retrieval Journal (2019) 22:232–255

1 3

multinomial distribution that generates fx , the features of x. NN(g)

�
 is a neural network with a

softmax output layer and parameters � . fx ∈ ℤ
F are sampled i.i.d. from p(f |z, �) = NN

(g)

�
(z).6

In other words, the vector fx contains the counts of observed features for x that were
sampled from g, and g was itself sampled by passing a gaussian random variable through a
neural network.

Under this deep-generative model a concept vector can simultaneously trigger multiple
observed features. This allows us to capture the correlations amongst features triggered by
a concept. For example, the concept of president can simultaneously trigger features
such as white house, executive order, or airforce one.

In order to infer the latent variable z ideally we should compute p�(z|) , the posterior dis-
tribution of z given the observations  . Unfortunately, this computation is intractable because
the prior is not conjugate to the likelihood that has a neural network. Another problem is
that it is unrealistic to assume access to a large set of ESE queries at training time, because
user’s information needs keep changing, therefore the approach used by Zaheer et al. (2017)
in DeepSets to discriminatively learn a neural scoring function is impractical for set expan-
sion. For the same reason it is also not possible to learn a single neural network whose input
is  and which directly approximates p�(z|) . Therefore it is non-trivial to apply the VAE
framework to ESE. To overcomes these problems we make the assumption that a query  is
conjunctive in nature, i.e. if entity x1 and x2 are present in  then results that are relevant to
both x1 and x2 simultaneously should be given a higher ranking than results that are related
to x1 but not x2 or vice-versa. We implement the conjunction of entities in a query by com-
bining the Product of Experts Hinton (1999) approach with the Variational Autoencoder
(VAE) Kingma and Welling (2013) method to approximate p�(z|).

We first map each x to an approximate posterior q�(z|x) via a neural network NN(i)

�
 and

then we take their product to approximate p�(z|).

The � parameters are estimated by minimizing KL(q(z|x) ∣∣ p(z|x)) as shown in Sect. 5.3.7
The benefit of the POE approximation is that the posterior approximation q�(.|x) for each
entity x in  acts as an expert and the product of these experts will assign a high value to
only that region where all the posteriors assign a high value. Therefore the POE approx-
imation is a way of implementing conjunctive semantics for a query. Another benefit is
that if q�(.|x) is an exponential family distribution with a constant base measure whose
natural parameters are the output of NN(i)

�
 , then the product of the distributions

∏
x q�(⋅�x)

lies in the same exponential family whose natural parameters are simply the sum of indi-
vidual neural network outputs.8,9 We use NN(i)

�
 to compute the mean and log-variance of

p�(z|) ≈ q�(z|) ∝
∏

x∈
q�(z|x).

6 Our generative model is inspired by Miao et al. (2016)’s NVDM. They assume that a single latent vari-
able generates only one observation, but we posit that the same latent variable z generates all observations
in .
7 This is a generalization of Bouchacourt et al. (2017) combining variational approximations of posterior
distributions since the product of gaussians is a Gaussian distribution.
8 Also notice that the POE approach recommends adding the outputs of the neural networks which is dif-
ferent than concatenating the features for all x in  or naively adding the inputs of the neural network.
(Appendix 2) gives more details.
9 Recently, Zaheer et al. (2017) gave a theorem that any permutation invariant function of sets must be rep-
resentable as the function of a sum of features of elements of the set. We note that our POE approximation
also has a similar form and is permutation invariant.

239Information Retrieval Journal (2019) 22:232–255

1 3

the gaussian distribution q�(z|x) (3) that we convert to the natural parameters of a Gaussian
(4). Next, we add the natural parameters of the individual variational approximations �x,Γx
to compute the parameters �,Γ for q�(z|) (5). Finally, we compute q�(z|) (6).

c(z|�,Γ) is the multi-variate Gaussian distribution in terms of its natural parameters:

5.2 Inference step 2: entity ranking

In order to rank the entities x ∈  , we design a similarity score between the probability
distributions q�(z|) and q�(z|x) as an efficient substitute for bayesian model comparison.
We use the distance between precision weighted means � and �x to define our “distance”
function as

Our inter-distribution “distance” is not a proper distance because it changes as the location
of both the input distributions is shifted by the same amount. We experimented with more
standard, reparameterization invariant, divergences and kernels such as the KL-divergence
and the Probability Product Kernel (Jebara et al. 2004), see (Appendix 4), but we found our
approach to be faster and more accurate. We believe this is because the regularization from
the prior that encourages the posteriors to be close to the origin makes shift invariance
unnecessary.

5.3 Unsupervised training

NVSE is trained in an unsupervised fashion to learn its parameters � and � . Kingma and Well-
ing (2013); Rezende et al. (2014) proposed the VAE framework for learning richly parameter-
ized conditional distributions p�(x|z) from unlabeled data. We follow Kingma and Welling
(2013)’s reparameterization trick to train a VAE and maximize the Evidence Lower Bound:

During training, we do not have access to any clustering information or side information
that tells us which entities can be grouped together. Therefore we assume that the entities
x ∈  were generated i.i.d. The model during training looks the same as Fig. 2 but with one

(3)�x,Σx = NN
(i)

�
(fx)

(4)�x, Γx = �xΣ
−1
x
, Σ−1

x
.

(5)�, Γ =
∑

x∈ �x,
∑

x∈ Γx.

(6)q�(z|) = c(z|�,Γ)

|Γ|1∕2
(2�)D∕2

exp

(
−
(zTΓz − 2�Tz + �TΓ−1�)

2

)
.

(7)score
NVSE

(, x) = −||� − �x||2.

(8)Eq�(z|x)[log p�(x|z)] − KL(q�(z|x)||p(z)).

240 Information Retrieval Journal (2019) 22:232–255

1 3

difference: Q is a singleton set of just one entity.10 Note that our learning method requires
no supervision in contrast to methods like Deep Sets which require cluster information, or
Neural Collaborative filtering methods which require a large dataset of user interactions.

6 Interpretability

We introduce a general approach for interpreting ESE models based on query rationales
to explain the latent concept the model discovered and result justifications to provide evi-
dence for why the system ranked an entity highly. Based on query rationales and result
justifications, users can add weights to entities in a query to tell the system what aspects of
the query to focus on or ignore.

6.1 Query rationale

A Query Rationale is a visualization of the latent beliefs of the ESE system given the
query  . Given  , we construct a feature-importance-map � that measures the relative
importance of the features in fx and we show the top features according to � as “Query
Rationales”. Recall that the jth component of fx , associated with entity x, measures how
often the jth feature co-occurred with x. We now present how we construct � for NVSE
and the baselines.

For BM25, � is simply ̄f . In BS, � is the weights from (11b): for each jth component
of fx,

The benefit of generative methods such as BS and NVSE is that for them query rationales
can be computed as a natural by-product of the generative process instead of as ad-hoc
post-processing steps. For NVSE, ideally � should be the posterior distribution p�(f |) .
Since this is intractable we approximate it by sampling the inference network:

We further approximate the expectation with a single sample of the mean of q�(z|) .
Finally the feature importance map for NVSE is:

Because Word2Vecf finds the nearest-neighbor between entity embeddings, which are pro-
duced through a complicated learning process operating on the whole text corpus, it does
not provide a natural way to determine the importance of a single sentence and therefore
it is not possible to say what was the effect of a particular sentence on the query results.
Similarly, since the SetExpan method works by extracting context features and iteratively
expanding this feature set, it is not possible to determine the effect of a single sentence on
the final search results.

𝛾[j] = log
�̃�[j]𝛽[j]
𝛼[j]𝛽[j]

.

p�(f |) = Ep� (z|)[p�(f |z,)] ≈ Eq�(z|)[p�(f |z)].

� = p�(f |E[q�(z|)]).

10 More informally, we remove the plates from Fig. 2.

241Information Retrieval Journal (2019) 22:232–255

1 3

6.2 Result justifications

We define result justifications as sentences in x that justify why an entity was ranked
highly for a given query. Ranking the sentences that mention an entity is similar to rank-
ing entities in  . Just as we create a feature vector for each x, we create a feature vector
for each sentence in x and use the same scoring function to rank the sentences based on
the query. While computing a score for entity x based on a query, we also score each sen-
tence in x . Our approach to generate interpretable result justifications is agnostic to ESE
methods with the caveat that for methods like Word2Vecf and SetExpan this will require
retraining or reindexing over the corpus for each query. Our approach will not be feasible
for such methods.

6.3 Weighted queries

Any recommendation system can occasionally fail to provide good results for a query. To
improve a system’s responses in such cases we enable users to guide NVSE ’s results by
using entity weights to influence the posterior distribution over topics.

If a user provides weights � = {�x ∣ x ∈ } , we compute the query features as

The above formulae have an intuitive explanation: when an entity has a higher weight then
the precision over the concepts activated by that entity is increased according to the mag-
nitude of the weight, and the value of the precision weighted mean is also weighted by the
user supplied weights. In turn, an entity with zero weight has zero effect on the final search
result and entities with a high negative weight return entities diametrically opposite to that
entity with higher confidence.

Weights can be applied to other methods as well. BM25 can multiply each fx by x’s
weights when computing f̄ , and Word2Vecf can use a weighted average. It is not straight-
forward to incorporate weights in BS and SetExpan systems. One possible way is to use
bootstrap resampling of the query entities according to a softmax distribution over entity
weights, but bootstrapping makes the system non-deterministic and therefore even more
opaque for a user. Also bootstrap resampling requires multiple query executions and it is
not straight-forward to combine the outputs of different search queries; therefore we do not
advocate for bootstrapping.

7 Comparative experiments

We test the hypothesis that NVSE can help bridge the gap between advances in IR and real
world use cases. We use human annotators on Amazon Mechanical Turk (AMT) to deter-
mine whether NVSE finds more relevant entities than our baseline methods in a real world,
automatically generated KG.

(9)�,� , Γ,� =
∑

x∈ �x�x,
∑

x∈ |�x|Γx.

242 Information Retrieval Journal (2019) 22:232–255

1 3

7.1 Dataset

TinkerBell (Al-Badrashiny et al. 2017) is a KG construction system that achieved top per-
formance in TAC-KGP2017 evaluation.11 We used it as our automatic KG. For each entity
e in TinkerBell we create e by concatenating all sentences that mention e and remove the
top 100 most frequent features in the corpus from e to clean stop words. Tinkerbell was
constructed from the TAC KGP 2017 evaluation source corpus, LDC2017E25, that con-
tains 30K English documents and 60K Spanish and Chinese documents.12 Half of the Eng-
lish documents come from online discussion forums and the other half from news sources,
e.g. Reuters or the New York Times. Our experiments only use the 77,845 EDL entities
within TinkerBell that are assigned the type Person. We use these links to create a map
from DBPedia categories to entities in TinkerBell, say M. Each entity in TinkerBell is asso-
ciated to spans of characters that mention that entity. We tokenize and sentence segment
the documents in LDC2017E25 and associate sentences to each entity corresponding to
mentions. In the end we get 344,735 sentences associated to the 77K entities. The median
number of sentences associated to an entity is 1 and the maximum number of sentences is
4638 for the Barack Obama entity.13 This is a good example of how automatic KGs differ
from manually curated KGs. In TinkerBell most of the entities appear in only a single sen-
tence so only a single fact may be known about them. In contrast KGs like FreeBase and
DBPedia have a more uniform coverage of facts for entities present in them. Another dif-
ference is that relational information such as ancestry relations between entities are much
more noisy in an automatically generated KB than in DBPedia which relies on manually
curated information present in Wikipedia.

7.2 Implementation details

We prune the vocabulary by removing any tokens that occur less than 5 times across all
entities. We end up with, F= 105448, V = 61311 , D = 24661 , and V� = 19476 . We used
BM25 implemented in Gensim (Řehůřek and Sojka 2010) and we implemented BS our-
selves. We choose � = 0.5 , out of 0, 0.5, or 1, after visual inspection. We used Word2Vecf
and SetExpan codebases released by the authors.14 For NVSE, we set d= 50 , � = 1 . The
generative network NN(g)

�
 does not have hidden layers and the inference network NN(i)

�
 has

1 hidden layer of size 500 with a tanh non-linearity and two output layers for the mean �x
and log of the diagonal of the variance Σx . We use a diagonal Σx.15 For Word2Vecf, we
used d = 100 to use the same number of parameters per entity as in NVSE. We trained
with default hyperparameters for 100 iterations. We used SetExpan with the default hyper-
parameters as well except that we limited the number of maximum iterations to 3 since we
only needed top 4 entities for our experiments.

11 Tinkerbell constructed a KG from LDC2017E25 that contains 30K English documents. Half of them
are from online forums and the other half from Reuters and NYT. We focused on the 77,845 entities from
English documents appearing in 344,735 sentences. 25,149 entities were also linked to DBPedia.
12 https ://tac.nist.gov/2017/KGP/data.html.
13 The mean is 4.43, the standard deviation is 29.19, the minimum number of sentences for an entity is 1,
the maximum number of sentences is 4638, and the median is 1 (44,317 entities).
14 https ://bitbu cket.org/yoavg o/word2 vecf, https ://githu b.com/micke ystro ller/SetEx pan.
15 Training NVSE on 1 Tesla K80 using the Adam optimizer with learning rate 5e−5 and minibatch size 64
took 12 h.

https://tac.nist.gov/2017/KGP/data.html
https://bitbucket.org/yoavgo/word2vecf
https://github.com/mickeystroller/SetExpan

243Information Retrieval Journal (2019) 22:232–255

1 3

7.3 Experimental design

Prior work typically evaluates ESE on a small number of queries, constituting the most
frequent entities, e.g. Ghahramani and Heller (2006) reported results for 10 queries with
highly cited authors and Shen et al. (2017) used 20 test queries created of 2000 most fre-
quent entities in Wikipedia. However in automatic KGs, most entities are mentioned only
a few times. For example 60% of the entities in TinkerBell are mentioned once. We are
primarily interested in unbiased evaluation over such entities, therefore we stratified the
evaluation queries into three types.

The 1st type contains entities mentioned in only 1 sentence, the 2nd contains entities
appearing in 2–10 sentences, and the 3rd contains entities mentioned in 11–100 sentences.
We also stratified queries based on whether they had 3, or 5 entities. For each query type
we randomly generate 80 queries by first sampling 80 Wikipedia categories and then sam-
pling entities from those categories that were also part of the TinkerBell KG. This results
in 480 queries. See Table 1 for examples.

For each query, we showed the names and first paragraphs from the Wikipedia abstracts
of the query’s entities, to help the AMT workers disambiguate entities unfamiliar to them.
Then we showed the workers the top 4 entities returned by each system. Each resultant
entity was shown with up to 3 justification sentences.16 Since SetExpan and Word2Vecf do

Table 1 Examples of randomly created queries

Category Entities

(1 Sent./Ent.) American Jazz Singers Paula West, Natalie Cole, Chaka Khan
(2–10 Sent.) Australian Major Golfers Marc Leishman, David Graham, James Nitties
(11–100 Sent.) The Apprentice (U.S) Contestants Maria, Rod Blagojevich, Dennis Rodman,

Joan Rivers, Piers Morgan

Table 2 The number of times a system was ranked 1st over 80 queries compared to other systems in the
same group

Ties were allowed so some rows may not sum to 80. Bold highlights the system with the most 1st in its
group. Extended results with second and third place rankings of the system are shown in Table 5

Ents. in query Sents. per Ent. Group 1 Group 2

NVSE BM25 BS NVSE SetEx W2Vecf

3 1 27 38 15 51 14 15
2–10 29 25 26 49 13 18
11–100 35 23 22 44 10 26

5 1 38 25 17 58 19 3
2–10 40 27 13 53 19 8
11–100 24 33 24 52 11 17
Total 193 171 117 307 86 87

16 Figure 3 in (Appendix 5) illustrates the AMT interface.

244 Information Retrieval Journal (2019) 22:232–255

1 3

not return justifications, we used NVSE to extract justifications for their results. We asked
workers to rank the systems between 1, the best system, to 3, the worst; and we allowed
for ties. The annotators found it difficult to compare results from 5 systems at a time so we
split our evaluation into two groups. Group 1 compared NVSE to BS and BM25, and group
2 compared NVSE to SetExpan and Word2Vecf. We randomized the placement of the lists
so that the workers could not figure out which system created which list.

7.4 Results

Table 2 shows the number of times the annotators ranked each system as the best out of the
80 queries. Over all queries, NVSE returned better results compared to the 4 baselines sys-
tems. It performed best with 5 entities in the query where each entity was only mentioned
up to 10 times in the corpus. This shows that NVSE is able to discern better quality topics
from multiple entities with sparse data. Extended results showing second and third place
rankings of the systems are given in Table 5 in the appendix which show that in cases that
when NVSE does not rank first it is typically chosen as the second ranking system.

The IR method BM25 was the strongest baseline, outperforming BS and SetExpan, and
even NVSE in two settings. We believe that this is because of the low-resource conditions
of our evaluation where ad-hoc IR methods can have an advantage. Another reason why
BM25 worked very well in our evaluation was because of the lack of auxilliary signals
such as entity inter-relations and entity links and because all the entities were of person
type. This makes our task different from the entity list completion (ELC) task (BALOG
2009) and a bit simpler for methods that focus heavily on lexical overlap. Another dif-
ference between the ESE task and the ELC task was that in the ELC task a descriptive
prompt describing the query was also given to the users while evaluating the relevance of
the returned results whereas no such prompt was given in the ESE task. We also found that
sometimes BM25 was rated highly because it returned results that were highly relevant
to a single query entity instead of being topically similar to all entities. For example, on
the query associated with “The Apprentice Contestants” BM25’s results solely focused on
Dennis Rodman, but NVSE tried to infer a common topic amongst entities and returned
generic celebrities which annotators did not prefer.

On entities with little data, Word2Vecf and SetExpan perform poorly. Word2Vecf
requires large amounts of data for learning useful representations (Altszyler et al. 2016)
which explains why it performs poorly in our evaluation. The SetExpan algorithm directly
uses context features extracted from the mentions of an entity, and returns entities with
the same context features. This approach can overfit with low data. Even though SetEx-
pan uses an ensembling method to reduce the variance of the algorithm, we believe using
context-features causes overfitting when an entity appears in only a few sentences. Lastly,
we believe that BS suffers because its impoverished generative model has neither non-line-
arities, nor low-dimensional topics for modeling correlations amongst tokens.

8 Analyzing interpretability

We now attempt to understand the similarity relations encoded in NVSE ’s internal concept
representations to understand what it is learning. We also provide examples of how query
rationales and query weights can help users fine-tune their queries.

245Information Retrieval Journal (2019) 22:232–255

1 3

Ta
bl

e
3

 T
he

 fi
rs

t r
ow

 c
on

ta
in

s t
op

 1
0

fe
at

ur
es

 m
os

t s
im

ila
r t

o
z
j

Th
e

bo
tto

m
 ro

w
 c

on
ta

in
s

la
be

ls
 a

gr
ee

d
up

on
 b

y
th

e
au

th
or

s;
 w

e
lo

os
el

y
re

fe
r t

o
th

e
gr

ou
p

w
he

re
 j
=
2
0
 a

s
“q

ua
lifi

er
s”

. U
nd

er
sc

or
ed

 w
or

ds
 s

ig
ni

fy
 th

at
 th

e
fe

at
ur

e
ca

m
e

fro
m

′M

er
ge

r
pr

oc
ur

em
en

t
hu

sb
an

d
iii

be
st

ve
ry

ga
m

e
ta

ck
le

w
ild

lig
ht

in
g

In
du

str
y

se
cu

rit
ie

s
si

ste
r

ho
us

e
its

m
os

t
dr

ill
fu

zz
y

ho
lly

co
stu

m
es

Pr
em

ie
rs

A
P-

do
c1

sh
e

la
bo

r
go

od
en

d
off

en
si

ve
21

ex
hi

bi
t

fa
sh

io
n

N
Y

T-
do

c2
an

al
ys

t
he

r
ki

ng
so

m
e

do
co

ac
h

do
c

m
ar

tin
s

ni
gh

tc
lu

b
Pr

ot
ec

tio
n

fo
un

de
rs

da
ug

ht
er

ch
ur

ch
on

ly
su

ch
ar

tu
r

do
c3

th
ril

le
r

th
ea

tri
ca

l
j=
3
 , b

us
in

es
s fi

na
nc

e
j=
1
4
 , f

am
ily

 ro
ya

lty
j=
2
0
 , “

qu
al

ifi
er

”
j=
3
3
 , f

oo
tb

al
l s

po
rt

s
j=
3
7
 , e

nt
er

ta
in

m
en

t
m

ov
ie

246 Information Retrieval Journal (2019) 22:232–255

1 3

Ta
bl

e
4

 T
he

 to
p

ro
w

 re
pr

es
en

ts
 a

 q
ue

ry
 w

ith
 w

ei
gh

ts
 in

 p
ar

en
th

es
es

 a
nd

 th
e

bo
tto

m
 ro

w
 li

sts
 c

or
re

sp
on

di
ng

 q
ue

ry
 ra

tio
na

le
s

A
bu

 B
ak

r B
ag

hd
ad

i (
1)

O
sa

m
a

B
in

 L
ad

en
 (1

)
O

.B
. L

ad
en

 (1
.5

) A
.B

. B
ag

hd
ad

i
(1

)
O

.B
. L

ad
en

 (0
.5

) A
.B

. B
ag

hd
ad

i
(2

)
O

.B
. L

ad
en

 (-
0.

2)
 A

.B
. B

ag
hd

ad
i

(1
)

qa
id

a,
 ir

aq
, a

bu
, b

ag
hd

ad
i,

ba
kr

,
al

, l
ea

de
r,

at
ta

ck
s

bi
n,

 la
de

n,
 o

sa
m

a,
 a

l,
ci

a,
 p

ak
i-

st
an

i,
af

rid
i,

qa
id

a
qa

id
a,

 a
l,

u,
 p

ak
ist

an
i,

ci
a,

 q
ae

da
,

go
ve

rn
m

en
t,

ki
lle

d
qa

id
a,

 a
l,

le
ad

er
, a

tta
ck

s,
u,

ki

lle
d,

 o
ffi

ci
al

s,
is

la
m

ic
ba

kr
, b

ag
hd

ad
i,

ab
u,

 ir
aq

, a
l,

se
ct

ar
ia

n,
 n

ur
i,

ku
rd

is
h

247Information Retrieval Journal (2019) 22:232–255

1 3

8.1 Understanding the concept space

To gain some insight into the distribution over concepts inferred by NVSE we determined
the top 10 words activated by individual dimension of z by computing NN(g)

�
(ej) where ej

is a one-hot vector in ℝ50 . Table 3 shows the top 10 words for selected components of z.
We can easily recognize that dimensions 3, 33 and 37 of z represent finance, sports, and
entertainment. Even though we did not constrain z to be component-wise interpretable, this
structure naturally emerged after training.

8.2 Weights and query rationale

Table 4 depicts how the query rationale returned by NVSE changes in response to entity
weights. In the first column the query is {Abu Bakr Baghdadi} and the query rationale tells
us that NVSE focuses on iraq, baghdadi etc. The second column shows a different query
{Osama Bin Laden} and the query rationales changes accordingly to pakistani and osama.
The third and fourth column show rationales when the weights on “Laden” and “Bagh-
dadi” are varied. When more weight is put on “Laden” then the query rationales contain
more features that are associated to him, and when more weight is put on “Baghdadi”, then
features such as “islamic” which is a token from his organization are returned. The last
column shows an interesting configuration where a user is effectively asking for results that
are similar to “Baghdadi” but dissimilar to “Laden” and the feature for kurdish gets acti-
vated. Since the system returns results in under 100ms, the user can fine-tune her query in
real-time with the help of these query rationales.

We give one more example of the utility of negative weights: When  = {Brady} ,
NVSE ’s rationale is [brady, game, patriots, left, knee, field, tackle], indicating that NVSE
associated the “Brady” entity with Tom Brady who is a member of the Patriots football
team. When we added “Wes Welker” to  with a negative weight, the query rationale
changed to [brady, game, left, tackle, knee, back, field]. Since Wes is a Patriots receiver
who received a negative weight in the query, NVSE deactivated the patriots feature and
activated the tackle feature, opposite to a receiver.

9 Conclusion

We introduced NVSE as a step towards making advances in entity set expansion useful to
real-world settings. NVSE is a novel unsupervised approach based on the VAE framework
that discovers related entities from noisy knowledge graphs. NVSE ranks entities in a KG
using an efficient and fast scoring function (7), ranking 80K entities on a commodity laptop
in 100 ms.

Our experiments demonstrated that NVSE can be applied in real-world settings where
automatically generated KGs are noisy. NVSE outperformed state of the art ESE systems
and other strong baselines on a real world KG. We also presented a flexible approach to
interpret ESE methods and justify their recommendations.

In future work, we will extend our work by improving our model using more powerful
auto-encoders such as the Ladder VAE (Sønderby et al. 2016), secondly we will experi-
ment with the use of side information such as links from a KG through the use of Graph
Convolutional Networks (Kipf and Welling 2017). Third, we will like to quantitatively

248 Information Retrieval Journal (2019) 22:232–255

1 3

measure how query rationales and justifications help users in accomplishing their search
task. Finally, we will incorporate confidence scores from the KG in our model. Although
there may be future work to improve our ESE method, we believe that NVSE serves as a
significant step towards utilizing KGs and semantics for information retrieval and under-
standing in real world settings.

Funding Funding was provided by Defense Advanced Research Projects Agency (Grant No.
FA8750-13-2-001).

Appendix 1: IDF computed for BM25

BM25 is computed based on the average total count of a feature in the entire corpus and
IDF[i] is the inverse document frequency of the ith feature amongst all documents, which
is defined as

Appendix 2: Computing product of experts for deep‑exponential
families

In this section we show how the product of experts can be computed simply by adding the
output of the neural networks in the special case that the variational approximation has the
following form:

where �(z) are the features of z. If h is constant—which is true for a number of exponential
family distributions such as the Bernoulli, Exponential, Pareto, Laplace, Gaussian, Gamma
and the Wishart distributions—then:

In turn,

This shows that the product of experts can be computed simply by summing the outputs
of the neural network activations for such deep-exponential families with constant base
measure.

Appendix 3: Bayesian sets

The Bayesian Sets algorithm ranks the elements in ⧵ according to the ratio of two
probabilities:

IDF[i] = log
X − DF[i] + 0.5

DF[i] + 0.5

DF[i] =
∑

x∈ �[fx[i] > 0].

(10)q�(z�x) ∝ h(z) exp(⟨�(z), NN
(i)

�
(x)⟩)

q�(z�x) ∝ exp(⟨�(z), NN
(i)

�
(x)⟩).

�

x∈
q�(z�x) ∝ exp(⟨�(z),

�

x∈
NN

(i)

�
(x)⟩).

249Information Retrieval Journal (2019) 22:232–255

1 3

Instead of assuming the commonly used Beta-Binomial distribution we may assume that
p(x|z) is a product of independent Poisson distributions with Gamma conjugate priors. I.e.
p(x�z) = ∏

k

z
xk
k

xk
 . The conjugate prior on z is a product of Gamma distributions,

Let f (xk, �k, �k) =

The Bayesian Sest score under these conditions is

Where �̃�k = 𝛼k +
∑

x∈ xk and 𝛽k = 𝛽k + Q . Note that if �̃�k = 𝛼k then f (xk ,�̃�k ,𝛽k)
f (xk ,𝛼k ,𝛽k)

= (
1+𝛽k

1+𝛽k+D
)xk

which means that features that occur in x that did not occur in  are penalized based on the
number of times the feature appeared. Therefore, the Gamma-Poisson distribution is a
good approximation only when quantitative differences in the number of times a feature
appears are important.

Finally we may assume that the components of x were sampled from conditionally inde-
pendent gaussian distributions with unknown mean and precisions. I.e. p(x|�, �) =

and p(�, �|�, �, �, �) =

In the following formulaes we omit the susbscript k for convenience.

score(x) =
p(x|)
p(x)

=
Ep(z|)[p(x|z)]
E�(z)[p(x|z)]

p(z|�, �) =
∏

k

�k
�k

Γ(�k)
zk

�k−1 exp(−�kzk).

(
xk + �k − 1

xk

)(
1 −

1

1 + �k

)�k
(

1

1 + �k

)xk

.

score(x) =
∏

k

f (xk, �̃�k, 𝛽k)

f (xk, 𝛼k, 𝛽k)

∏

k

√
�

2�
exp(−(xk − �k)

2�k)

�

k

�k
�k
√
�k

Γ(�k)
√
2�

�k
�k−

1

2 exp(−�k�k) exp

�
−
�k�k(�k − �k)

2

2

�
.

x̄ =
1

Q

∑

x∈
x

�̃� =
𝜆𝜌 + Qx̄

𝜆 + Q

�̃� = 𝜆 + Q

�̃� = 𝛼 + Q∕2

𝛽 = 𝛽 +
1

2

∑

x∈
(x − x̄)2 +

Q𝜆

Q + 𝜆

(x̄ − �̃�)2

2

250 Information Retrieval Journal (2019) 22:232–255

1 3

The Bayesian Sets score is the ratio of two t distribution values

Now the value of t�(x|a, b) where a is the location parameter and b is the scale parameter
is:

In order to use this distribution with count data, it is important to use some variance
stabilizing transform, and then perform mean and variance normalization to preprocess all
the count features. In this way we can set the priors �̃�k to be 0 and �k can be set uniformly to
some small number such as 2 and alphak, �k can be chosen to be 2, 1 respectively.

Appendix 3.1 Binarizing feature counts

BS binarizes the feature vector fx as f ′
x
 via thresholding:

where � ∈ ℝ is a hyperparameter. BS’s scoring function becomes

Appendix 4: Ranking methods

A standard function for computing the distance between distributions is the KL-divergence.
Another possibility to compute the distance between distributions is to compute the symmetric
version of the KL-divergence. Another standard method for computing the similarity between
two probability distributions is to compute the probability product kernel (PPK) between two
distributions Jebara et al. (2004); i.e.

score(x) =
∏

k

t2�̃�k

(
xk ∣ �̃�k,

𝛽k(�̃�k+1)

�̃�k �̃�k

)

t2𝛼k

(
xk ∣ 𝜌k,

𝛽k(𝜆k+1)

𝛼k𝜆k

)

t�(x�a, b) =
Γ
�

�+1

2

�

√
b��Γ

�
�

2

�
�
1 +

(x − a)2

b�

�−
�+1

2

f �
x
[j] = �[fx[j] > 𝜇[j] + 𝜆𝜎[j]]

𝜇[j] =

∑
x∈ fx[j]

X
, 𝜎2[j]=

∑
x∈ (fx[j] − 𝜇[j])2

X
,

(11a)score
BS

(,x) =
F∑

j=1

(
log

�̃�[j]𝛽[j]
𝛼[j]𝛽[j]

)
f �
x
[j]

(11b)�̃�[j] = 𝛼[j] +
∑

x∈
f �
x
[j]

(11c)𝛽[j] = 𝛽[j] + Q −
∑

x∈
f �
x
[j].

251Information Retrieval Journal (2019) 22:232–255

1 3

In the special case that q�(z|) and q�(z|x) have the special deep-gaussian form then the
KL divergence as well as the inner product can be computed in closed form. KL Diver-
gence between two distributions normal distributions p1, p2 with parameters (�1,Σ1) and
(�2,Σ2) is:

and PPK is

In the further special case that �2 = �,Σ2 = � then the KL divergence simplifies to:

However, we propose here a simple way to compute the distance between two normal dis-
tributions. If �1,Σ1 and �2,Σ2 are the mean and variance of two normal distributions, p1, p2
then we use the following distance

This metric can be implemented as a single matrix multiplication while KL divergence
and PPK cannot. Intuitively this distance gives higher weightage to those dimensions where
the variance of the either the distributions is lower. In preliminary experiments we found
this distance to be superior to KL divergence and PPL and we use this distance function in
our experiments. We believe that the regularization from the gaussian prior that encourages
the posterior distributions to be close to the origin make shift invariance unnecessary.

Appendix 5: Mechanical Turk HIT interface and extended results

Table 5 shows the second and third place rankings of the systems and extends the results
shown in Table 2.

⟨q�(z�), q�(z�x)⟩ = �z

q�(z�)q�(z�x)dz

KL(p1||p2) =
1

2

(
tr(Σ−1

2
Σ1) + (𝜇1 − 𝜇2)

⊤Σ−1
2
(𝜇1 − 𝜇2) − d + log

det(Σ2)

det(Σ1)

)
.

exp(
−(�1 − �2)

T (Σ1 + Σ2)
−1(�1 − �2)

2
− log det((Σ1 + Σ2)))

KL(p1||p2) =
1

2

(
tr(Σ1) + �T

1
�1 − d − log det(Σ1)

)
.

d(p1, p2) = ||�1Σ
−1
1

− �2Σ
−1
2
||2 = ||�1 − �2||2

252 Information Retrieval Journal (2019) 22:232–255

1 3

Ta
bl

e
5

 T
he

 n
um

be
r o

f t
im

es
 a

 sy
ste

m
 w

as
 ra

nk
ed

 2
nd

 (l
ef

t s
ub

ta
bl

e)
 a

nd
 3

rd
 (r

ig
ht

 su
bt

ab
le

) o
ve

r 8
0

qu
er

ie
s

En
ts

. I
n

qu
er

y
Se

nt
s.

G
ro

up
 1

G
ro

up
 2

G
ro

up
 1

G
ro

up
 2

Pe
r E

nt
.

N
V

SE
B

M
25

B
S

N
V

SE
Se

tE
x

W
2V

ec
f

N
V

SE
B

M
25

B
S

N
V

SE
Se

tE
x

W
2V

ec
f

3
1

36
28

16
20

21
39

17
14

49
9

45
26

2–
10

22
36

22
26

22
32

29
19

32
5

45
30

11
–1

00
24

26
30

23
22

34
21

31
28

12
48

20
5

1
28

37
15

20
47

13
14

18
48

2
14

64
2–

10
22

27
31

21
50

9
18

26
36

6
10

63
11

–1
00

20
27

32
17

29
34

36
20

24
11

40
29

253Information Retrieval Journal (2019) 22:232–255

1 3

References

Al-Badrashiny, M., Bolton, J., Tejavsi Chaganty, A., Clark, K., Harman, C., Huang, L., Lamm, M., Lei,
J., Lu, D., Pan, X., Paranjape, A., Pavlick, E., Peng, H., Qi, P., Rastogi, P., See, A., Sun, K., Thomas,
M., Tsai, C. T., Wu, H., Zhang, B., Callison-Burch, C., Cardie, C., Ji, H., Manning, C., Muresan, S.,
Rambow, O. C., Roth, D., Sammons, M., & Van Durme, B. (2017). Tinkerbell: Cross-lingual cold-start
knowledge base construction. In Text analysis conference (TAC).

Altszyler, E., Sigman, M., & Slezak, D. F. (2016). Comparative study of LSA vs word2vec embeddings in
small corpora: a case study in dreams database. CoRR http://arxiv .org/abs/1610.01520 .

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). Dbpedia: A nucleus for a
web of open data. The semantic web pp. 722–735.

Balog K. (2009). Overview of the trec 2009 entity track. In Proc. TREC2009.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning

research, 3, 993–1022.

Fig. 3 Example of task shown to a crowd-source worker

http://arxiv.org/abs/1610.01520

254 Information Retrieval Journal (2019) 22:232–255

1 3

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: A collaboratively created
graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD interna-
tional conference on management of data, New York, NY: ACM.

Bouchacourt, D., Tomioka, R., & Nowozin, S. (2017). Multi-level variational autoencoder: Learning dis-
entangled representations from grouped observations. arXiv preprint http://arxiv .org/abs/1705.08841 .

Demartini, G., Iofciu, T., & De Vries, A. P. (2010). Overview of the inex 2009 entity ranking track. In Pro-
ceedings of the focused retrieval and evaluation, and 8th international conference on initiative for the
evaluation of XML retrieval. INEX’09, (pp. 254–264). Berlin, Heidelberg: Springer.

Ghahramani, Z., & Heller, K. A. (2005). Bayesian sets. In Proceedings of the 18th international confer-
ence on neural information processing systems. NIPS’05, (pp. 435–442). Cambridge, MA, USA:
MIT Press.

Gottipati, S., & Jiang, J. (2011). Linking entities to a knowledge base with query expansion. In Proceed-
ings of the conference on empirical methods in natural language processing, association for com-
putational linguistics,(pp. 804–813).

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017). Neural collaborative filtering. In
Proceedings of the 26th international conference on World Wide Web. WWW ’17, Republic and
Canton of Geneva, Switzerland, international World Wide Web conferences steering Committee,
(pp. 173–182).

He, Y., & Grishman, R. (2015). Ice: Rapid information extraction customization for nlp novices. In Pro-
ceedings of the 2015 conference of the North American chapter of the association for computational
linguistics: Demonstrations, Denver, Colorado, Association for computational linguistics, (pp. 31–35).

He, Y., & Xin, D. (2011). Seisa: set expansion by iterative similarity aggregation. In Proceedings of the 20th
international conference on World wide web, (pp. 427–436). ACM.

Hinton, G. E. (1999). Products of experts. In 1999 ninth international conference on artificial neural net-
works ICANN 99. (Conf. Publ. No. 470), (Vol 1, pp. 1–6).

Jebara, T., Kondor, R., & Howard, A. (2004). Probability product kernels. Journal of Machine Learning
Research, 5, 819–844.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint http://arxiv .org/
abs/1312.6114.

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In
Proceedings of ICLR.

Lang, J., & Henderson, J. (2013). Graph-based seed set expansion for relation extraction using random walk
hitting times. In Proceedings of the 2013 conference of the north american chapter of the association
for computational linguistics: Human language technologies, Atlanta, Georgia, Association for com-
putational linguistics, (pp. 772–776).

Lee, W., Song, K., & Moon, I. C. (2017). Augmented variational autoencoders for collaborative filtering
with auxiliary information. In ACM conference on information and knowledge management, Num-
ber 6. ACM. https ://doi.org/10.475/1234.

Levy, O., & Goldberg, Y. (2014). Dependency-based word embeddings. In Proceedings of the 52nd annual
meeting of the association for computational linguistics (volume 2: short papers), Baltimore, Mary-
land: Association for computational linguistics, (pp. 302–308).

Lin, D. (1998). Automatic retrieval and clustering of similar words. In Proceedings of the 17th interna-
tional conference on computational linguistics-Volume 2, Association for computational linguistics,
(pp. 768–774).

Manning, C. D., Raghavan, P., & Schtze, H. (2008). Introduction to information retrieval. Cambridge: Cam-
bridge University Press.

Metzger, S., Schenkel, R., & Sydow, M. (2014). Aspect-based similar entity search in semantic knowledge
graphs with diversity-awareness and relaxation. In Web Intelligence (WI) and intelligent agent tech-
nologies (IAT), 2014 IEEE/WIC/ACM international joint conferences on, (pp. 60–69). IEEE.

Miao, Y., Yu, L., & Blunsom, P. (2016). Neural variational inference for text processing. In International
conference on machine learning, (pp. 1727–1736).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Proceedings of the 26th international conference on neural
information processing systems—Volume 2. NIPS’13, (pp. 3111–3119). USA: Curran Associates Inc.

Mitra, B., & Craswell, N. (2017). Neural models for information retrieval. ArXiv e-prints (May 2017).
Pantel, P., Crestan, E., Borkovsky, A., Popescu, A. M., & Vyas, V. (2009). Web-scale distributional similar-

ity and entity set expansion. In Proceedings of the 2009 conference on empirical methods in natural
language processing, Singapore, Association for Computational Linguistics, (pp. 938–947).

Paşca, M., & Van Durme, B. (2007). What you seek is what you get: Extraction of class attributes from
query logs. In IJCAI.

http://arxiv.org/abs/1705.08841
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.475/1234

255Information Retrieval Journal (2019) 22:232–255

1 3

Paşca, M., & Van Durme, B. (2008). Weakly-supervised acquisition of open-domain classes and class attrib-
utes from web documents and query logs. In Proceedings of ACL-08: HLT, (pp. 19–27).

Poliak, A., Rastogi, P., Martin, M. P., & Van Durme, B. (2017). Efficient, compositional, order-sensitive
n-gram embeddings. In Proceedings of the 15th conference of the European chapter of the association
for computational linguistics: Volume 2, short papers, Valencia, Spain, Association for Computational
Linguistics, (pp. 503–508).

Pujara, J., Augustine, E., & Getoor, L. (2017). Sparsity and noise: Where knowledge graph embeddings fall
short. In Proceedings of the 2017 conference on empirical methods in natural language processing,
Copenhagen, Denmark, Association for computational linguistics, (pp. 1751–1756).

Rastogi, P., Lyzinski, V., & Van Durme, B. (2017). Vertex nomination on the cold start knowledge graph.
Human Language Technology Center of Excellence: Technical report.

Řehůřek, R., & Sojka, P. (2010). Software framework for topic modelling with large corpora. In Proceed-
ings of the LREC 2010 workshop on new challenges for NLP frameworks, Valletta, Malta, ELRA, (pp.
45–50).

Rezende, D. J., Mohamed, S., & Wierstra, D. (2014). Stochastic backpropagation and approximate inference
in deep generative models. arXiv preprint arXiv:1401.4082.

Robertson, S., & Zaragoza, H. (2009). The probabilistic relevance framework: Bm25 and beyond. Founda-
tions Trends in Information Retrieval, 3(4), 333–389.

Sadamitsu, K., Saito, K., Imamura, K., & Kikui, G. (2011). Entity set expansion using topic information. In
Proceedings of the 49th annual meeting of the association for computational linguistics: Human lan-
guage technologies, Portland, Oregon, USA, Association for computational linguistics, (pp. 726–731).

Shen, J., Wu, Z., Lei, D., Shang, J., Ren, X., & Han, J. (2017). Setexpan: Corpus-based set expansion via
context feature selection and rank ensemble. In M. Ceci, J. Hollmén, L. Todorovski, C. Vens, & S.
Džeroski (Eds.), Machine learning and knowledge discovery in databases (pp. 288–304). Cham:
Springer International Publishing.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., & Winther, O. (2016). Ladder variational autoen-
coders. In Proceedings of the 30th international conference on neural information processing systems.
NIPS’16, (pp. 3738–3746). USA: Curran Associates Inc.

Tong, S., & Dean, J. (2008). System and methods for automatically creating lists (March 25 2008) US Pat-
ent 7,350,187.

Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J., & Larochelle, H. (2017). A meta-learning perspec-
tive on cold-start recommendations for items. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information processing systems
(Vol. 30, pp. 6907–6917). Red Hook: Curran Associates Inc.

Wang, R. C., & Cohen, W. W. (2007). Language-independent set expansion of named entities using the web.
In Seventh IEEE international conference on data mining (ICDM 2007), (pp. 342–350).

Wang, R. C., & Cohen, W. W. (2008). Iterative set expansion of named entities using the web. In 2008
eighth IEEE international conference on data mining, (pp. 1091–1096).

Wang, R. C., & Cohen, W. W. (2009). Automatic set instance extraction using the web. In Proceedings of
the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference
on natural language processing of the AFNLP: Volume 1-Volume 1, Association for computational
linguistics,)(pp. 441–449).

Wang, R. C., Schlaefer, N., Cohen, W. W., & Nyberg, E. (2008). Automatic set expansion for list question
answering. In Proceedings of the 2008 conference on empirical methods in natural language process-
ing, Honolulu, Hawaii, Association for computational linguistics, (pp. 947–954).

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep
sets. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett
(Eds.), Advances in neural information processing systems (Vol. 30, pp. 3394–3404). Red Hook: Cur-
ran Associates Inc.

Zaidan, O., Eisner, J., & Piatko, C. (2007). Using annotator rationales to improve machine learning for text
categorization. In Human language technologies 2007: The conference of the North American chapter
of the association for computational linguistics; proceedings of the main conference, (pp. 260–267).

Zhang, X., Chen, Y., Chen, J., Du, X., Wang, K., & Wen, J. R. (2017). Entity set expansion via knowledge
graphs. In Proceedings of the 40th international ACM SIGIR conference on research and development
in information retrieval. SIGIR ’17, (pp. 1101–1104). New York, NY: ACM.

Zheng, Y., Shi, C., Cao, X., Li, X., & Wu, B. (2017). Entity set expansion with meta path in knowledge
graph. In Pacific-Asia conference on knowledge discovery and data mining, (pp. 317–329). Springer.

	Neural variational entity set expansion for automatically populated knowledge graphs
	Abstract
	1 Introduction
	2 Related work
	2.1 Methods dependent on external information
	2.2 Methods for comparing entities
	2.3 Queries as natural language
	2.4 Neural collaborative filtering

	3 Notation
	4 Baseline methods
	4.1 BM25
	4.2 Bayesian sets
	4.3 Word2Vecf
	4.4 SetExpan

	5 Neural variational set expansion
	5.1 Inference step 1: concept discovery
	5.2 Inference step 2: entity ranking
	5.3 Unsupervised training

	6 Interpretability
	6.1 Query rationale
	6.2 Result justifications
	6.3 Weighted queries

	7 Comparative experiments
	7.1 Dataset
	7.2 Implementation details
	7.3 Experimental design
	7.4 Results

	8 Analyzing interpretability
	8.1 Understanding the concept space
	8.2 Weights and query rationale

	9 Conclusion
	References

