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Why NLI as
an NLP task?



Evaluation &
Probing models
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Historically

FraCas: determine whether a model

performs distinct types of reasoning
(Cooper et al., 1996)

Pascal RTE: “a generic evaluation
framework” to compare models

for distinct downstream tasks

(Dagan et al., 2006)
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More recent
SNLI & Multi-NLI:  large scale datasets

(Bowman et. al. 2015; Williams et. al. 2018)

Evaluate sentence representations
(Rep Eval 2017 Shared Task - Nangia et. al. 2017)

Training to improve models for

downstream tasks
(Guo et. al. 2018)
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NLU Insights
Generation Methods

Small Probing Sets



Characteristic 1: NLU Insights

Understanding our models’ reasoning
capabillities”
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Characteristic 1: NLU Insights
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Characteristic 2: Generation Methods

Expensive

| eads to biases:

Stereotypical
(Rudinger et. al. 2017)

Class-based Statistical Irregularities
(Tsuchiya, 2018; Gururangan et al., 2018; Poliak et al., 2018)
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Characteristic 3: Small Probing Sets

FraCas is too small

Training neural network
on 300 examples '
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The DNC

Diverse Natural Language Inference
Collection

Large scale collection of diverse NLI
problems

Convert 7 semantic phenomena into NLI
from 13 existing datasets



The DNC - Examples

» Find him before he finds the dog food
Event The finding did not happen
Factuality » I'll need to ponder
The pondering happened

» Ward joined Tom in their native Perth
Relation Ward was born in Perth
Extraction » Stefan had visited his son in Bulgaria
Stefan was born in Bulgaria

» Kim heard masks have no face value
Kim heard a pun

» Tod heard that thrift is better than annuity
Tod heard a pun

Puns
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The DNC

Sem. Phenomena/Annotations Dataset # pairs
Decomp (Rudinger et al., 2018b) 42K (41,888)
Event Factuality UW (Lee et al., 2015) 5K (5,094)
MeanTime (Minard et al., 2016) 7K (738)
. . Groningen (Bos et al., 2017) 260K (261,406)
Named Entity Recognition |~y 1 Tiong Kim Sang and De Meulder, 2003) | 60K (59,970)
Gendered Anaphora | Winogender (Rudinger et al., 2018a) | 4K (464)

Lexicosyntactic Inference

VerbCorner (Hartshorne et al., 2013)
MegaVeridicality (White and Rawlins, 2018)

135K (138, 648)
11K (11,814)

VerbNet (Schuler, 2005) 2K (1, 950)
Puns (Yang et al., 2015) 9K (9,492)
SemEval 2017 Task 7 (Miller et al., 2017) 8K (8,054)
Relationship Extraction | FACCI1 (Gabrilovich et al., 2013) | 30K (30,920)
Sentiment Analysis | (Kotzias et al., 2015) | 6K (6,000)
Combined | Diverse NLI Collection (DNC) | 575K (576,438)
—_ SNLI (Bowman et al., 2015) 570K
- Multi-NLI (Williams et al., 2017) 433K

W ]OHN S HOPKINS

UNIVERSITY
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] decompositional-semantics-initiative /| DNC @unwatchv 4  Kunstar 9 | ¥Fork 1
<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Settings

Diverse Natural Language Inference Collection - NLI dataset that can used to evaluate how well models perform distinct Edit
types of reasoning (EMNLP 2018) http://decomp.io/projects/diverse-nat...

natural-language-processing natural-language-inference computational-semantics emnlp2018 Manage topics

D 6 commits ¥ 1 branch © 1release 22 1 contributor
Branch: master v New pull request Create new file = Upload files = Find file Clone or download ™
azpoliak update README.md - inference is everything data - Latest commit 6a8beee on Sep 14
i dev Released DNC and updated README 2 months ago
i test Released DNC and updated README 2 months ago
@ train Released DNC and updated README 2 months ago
[E) README.md update README.md - inference is everything data a month ago
additional_references.md added bibs for original datasets 2 months ago
[£) inference_is_everything.zip included White et al's IJCNLP 2017 recast data a month ago
README.md s

DNC: Diverse Natural Language Inference Collection

Dataset associated and released as part of Collecting Diverse Natural Language Inference Problems for Sentence
Representation Evaluation (EMNLP 2018).
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DNC

Sem. Phenomena/Annotations

Event Factuality

Dataset
Decomp (Rudinger et al., 2018b)

UW (Lee et al., 2015)

42K (41,388)
5K (5,094)

MeanTime (Minard et al., 2016

Named Entity Recognition

Groningen (Bos et al., 2017)
CoNLL (Tjong Kim Sang and De Meulder, 2003)

260K (261,406)
60K (59,970)

Gendered Anaphora

| Winogender (Rudinger et al., 2018a)

4K (464)

Lexicosyntactic Inference

VerbCorncr (Hartshome et al., 2013)

135K (138 648)

2K 1 950

Puns (Yang et al., 2015) 9K (9,492)
SemEval 2017 Task 7 (Miller et al., 2017) 8K (8,054)
Relationship Extraction | FACCI1 (Gabrilovich et al., 2013) | 30K (30,920)
Sentiment Analysis | (Kotzias et al., 2015) | 6K (6,000)
Combined | Diverse NLI Collection (DNC) | 575K (576,438)
- SNLI (Bowman et al., 2015) 570K
— Multi-NLI (Williams et al., 2017) 433K
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Focused Evaluation Datasets
that probe different
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—vent Factuality

Create natural language template
Extract annotated preposition
Fill in template with preposition

Label example based on annotation



-actuality

Event

I enjoyed studying here

JOHNS HOPKINS
4 UNIVERSITY
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Event Factuality

I enjoyed studying here

happened
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Event Factuality

I enjoyed studying here
The studying happened

entailed not-entailed
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Event Factuality

I enjoyed studying here
The studying did not happen

entailed not-entailed
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Event Factuality

I actually forgot to feed my chicken
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Event Factuality

I actually forgot to feed my chicken

did not happened
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Event Factuality

I actually forgot to feed my chicken

The feeding happened

entailed not-entailed
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Event Factuality

I actually forgot to feed my chicken

The feeding did not happen

entailed not-entailed

JOHNS HOPKINS

UNIVERSITY
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It Happened (White et. al. 2016; Rudinger et. al. 2018)
42K Examples

UW (Lee et. al. 2015)
5K Examples

MeanTime (Minard et. al. 2016)
/00 Examples
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ROLES
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VerbNet Thematic Roles

The hygienist flossed my teeth

Agent took care of Patient

entailed not-entailed
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The hygienist flossed my teeth

The hygienist took care of my teeth

entailed not-entailed
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VerbNet Thematic Roles

The hygienist flossed my teeth

Patient took care of Agent

entailed not-entailed

JOHNS HOPKINS

UNIVERSITY
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VerbNet Thematic Roles

The hygienist flossed my teeth

My teeth took care of the hygienist

entailed not-entailed

JOHNS HOPKINS

UNIVERSITY
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—xperimental Goal

“demonstrate how the DNC can help to
evaluate how well models capture different
types of semantic reasoning necessary for
general language understanding”
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n-way softmax

T

fully connected layer

T

u, Vv

Max Pooling / \

u Vv

1 [Bidirectional LSTM|

sentence encoder over sentence encoder over
context sentence hypothesis sentence

GloVe embeddings




MLP with 1
hidden layer

Max Pooling

n-way softmax

T

fully connected layer

T

u,v

N

u Vv

1 [Bidirectional LSTM|

sentence encoder over sentence encoder over
context sentence hypothesis sentence

GloVe embeddings




n-way softmax HypotheSiS

T Only baseline
fully connected layer (Poliak et. al.

T *SEM 2018)

v

A

sentence encoder over
hypothesis sentence



Results

W NER EF RE Puns Sentiment GAR | VC MV VN
Model
Majority (MAJ) 50.00 50.00 59.53 50.00 50.00 50.00 | 50.00 66.67 53.66
No Pre-training
InferSent 92.50 83.07 61.89 60.36 50.00 = 88.60 85.96 46.34
Hyp-only 9148 69.14 64.78 60.36 50.00 - 76.82 77.83 46.34
Pre-trained DNC
InferSent (update) | 92.47 83.86 74.38 93.17 81.00 = 89.00 85.62 76.83
InferSent (fixed) 9220 81.07 74.11 817.76 77.33 50.65 | 88.59 83.84 67.68
Hyp-only (update) | 91.60 71.07 70.57 60.02 46.83 = 76.78 77.83 68.90
Hyp-only (fixed) 91.37 69.74 6597 56.44 48.17 50.00 | 76.78 77.83 59.15
Pre-trained Multi-NLI
InferSent (update) | 92.37 83.03 76.08 92.48 83.50 = 88.45 85.11 78.05
InferSent (fixed) 5299 54.88 66.75 56.04 56.50 50.65 | 45.33 5592 45.73
Hyp-only (update) | 91.62 70.64 69.91 60.36 49.33 = 76.82 77.83 68.29
Hyp-only (fixed) 52.55 66.33 5296 60.59 50.00 50.43 | 41.31 46.28 48.78

91



—xperimental Setup




—xperimental Setup

Train models on each DNC dataset
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—xperimental Setup

Train models on each DNC dataset

Pre-train models on all of DNC or Multi-
NLI
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—xperimental Setup

Train models on each DNC dataset

Pre-train models on all of DNC or Multi-NL|

Evaluate fixed models trained on all of
DNC or Multi-NLI
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The DNC: Diverse NLI Collection

Convert 13 existing datasets into NLI
covering 7 semantic phenomena

Over half a million examples

Presented use case of DNC
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Call to the Community

Dataset creators:
convert your data into NLI
iNncluded in future DNC releases

Model creators:

test your models ability to capture
diverse types of reasoning
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Data Example

"binary-label": false,
"context": "The hygienist flossed my teeth .",
"hypothesis": "My teeth took care of the hygienist .",
"label": "not-entailed",
"label-set": |
"entailed",
"not-entailed"
1,
"pair-id": 504820,
llsplitll: "deV"’
"type-of-inference": "Thematic Roles"
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MetaData Example

"corpus': "VerbNet",
"corpus-license": "http://verbs.colorado.edu/verbn
"corpus—-sent-id": "floss—-41.2.1_NP V NP",
"creation—-approach": "automatic",
"misc": {

"descriptionNumber": "0.2",

"secondary": "Transitive",

letagll: il
}

"pair-id": 504820
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Structure of json files:

Data files:

Each datafile has the following keys and values:

e context : The context sentence for the NLI pair. The context is already tokenized.

e hypothesis : The hypothesis sentence for the NLI pair. The hypothesis is already tokenized.

e label : The label for the NLI pair

e Tlabel-set : The set of possible labels for the specific NLI pair

e binary-label : A True or False label. See the paper for details on how we convert the label into a binary label.
e split:Thiscanbe train, dev, or test.

e type-of-inference : A string indicating what type of inference is tested in this example.

e pair-id : A unique integer id for the NLI pair. The pair-id is used to find the corresponding metadata for any
given NLI pair

@ Metadata files:

e pair-id : A unique integer id for the NLI pair.

e corpus : The original corpus where this example came from.

e corpus-sent-id : The id of the sentence (or example) in the original dataset that we recast.
e corpus-license : The license for the data from the original dataset.

e creation-approach : Determines the method used to recast this example. Options are automatic , manual, or
human-labeled .

e misc : A dictionary of other relevant information. This is an optional field.
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Thank you!
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Data and paper available
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