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Why NLI as 
an NLP task?
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Historically



FraCas: determine whether a model 
performs distinct types of reasoning 

(Cooper et al., 1996)

Pascal RTE: “a generic evaluation 
framework” to compare models 
for distinct downstream tasks  

(Dagan et al., 2006)
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SNLI & Multi-NLI: large scale datasets
(Bowman et. al. 2015; Williams et. al. 2018)
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SNLI & Multi-NLI: large scale datasets
(Bowman et. al. 2015; Williams et. al. 2018)

Evaluate sentence representations
(Rep Eval 2017 Shared Task - Nangia et. al. 2017)

Training to improve models for
downstream tasks

(Guo et. al. 2018)
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Understanding our models’ reasoning 
capabilities?
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Expensive 

Leads to biases:
Stereotypical
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Expensive 

Leads to biases:
Stereotypical

(Rudinger et. al. 2017)

Class-based Statistical Irregularities
(Tsuchiya, 2018; Gururangan et al., 2018; Poliak et al., 2018)
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Characteristic 3: Small Probing Sets



FraCas is too small 

Training neural network
on 300 examples
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Characteristic 3: Small Probing Sets



Outline

● Introduction

● The DNC: Diverse NLI Collection

● Constructing the DNC 

● Experiments & Results
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Diverse Natural Language Inference 
Collection

Large scale collection of diverse NLI 
problems



The DNC
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Diverse Natural Language Inference 
Collection

Large scale collection of diverse NLI 
problems

Convert 7 semantic phenomena into NLI 
from 13 existing datasets         
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● Constructing the DNC 

● Experiments & Results
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Recasting

Recast

Existing resources“Leverage existing 
semantic 
annotations to 
create NLI 
datasets that 
probe different 
semantic 
phenomena” Focused Evaluation Datasets

that probe different 
semantic phenomena
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Create natural language template

Extract annotated preposition  

Fill in template with preposition

Label example based on annotation
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Event Factuality
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The studying happened

entailed not-entailed
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Event Factuality
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Event Factuality
I actually forgot to feed my chicken

The feeding did not happen

entailed not-entailed
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It Happened (White et. al. 2016; Rudinger et. al. 2018)

42K Examples

UW (Lee et. al. 2015)

5K Examples

MeanTime (Minard et. al. 2016)

700 Examples
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VerbNet Thematic Roles
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Recast VerbNet
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Recast VerbNet
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Recast VerbNet
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1. Align tokens to Thematic Roles

2. Convert semantics into natural language templates

3. Fill in natural language templates



VerbNet Thematic Roles
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VerbNet Thematic Roles
The hygienist flossed my teeth
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Patient took care of Agent

entailed not-entailed



VerbNet Thematic Roles
The hygienist flossed my teeth
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My teeth took care of the hygienist

entailed not-entailed



Outline

● Introduction

● The DNC: Diverse NLI Collection

● Constructing the DNC

● Experiments & Results
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Experimental Goal
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Experimental Goal

“demonstrate how the DNC can help to 
evaluate how well models capture different 
types of semantic reasoning necessary for 
general language understanding”
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Typical 
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InferSent
(Conneau et. 

al. 2017)
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GloVe embeddings

Bidirectional LSTM

Max Pooling

MLP with 1 
hidden layer
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Hypothesis 
Only baseline
(Poliak et. al. 
*SEM 2018)
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Experimental Setup
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Train models on each DNC dataset

Experimental Setup

93



94

20

40

60

80

100
NER EF RE Puns Seniment VC MV VN

MAJ Hypothesis InferSent



95

20

40

60

80

100
NER EF RE Puns Seniment VC MV VN

MAJ Hypothesis InferSent



Train models on each DNC dataset

Pre-train models on all of DNC or Multi-
NLI

Experimental Setup
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Train models on each DNC dataset

Pre-train models on all of DNC or Multi-NLI

Evaluate fixed models trained on all of 
DNC or Multi-NLI

Experimental Setup
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Summary

The DNC: Diverse NLI Collection
Convert 13 existing datasets into NLI
covering 7 semantic phenomena 

Over half a million examples

Presented use case of DNC
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Call to the Community

Dataset creators: 
convert your data into NLI
included in future DNC releases 

Model creators:
test your models ability to capture 
diverse types of reasoning
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On the Evaluation of Semantic 
Phenomena in NMT Using NLI

(Poliak et. al. 
NAACL 2018)
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Data Example
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MetaData Example



Thank you!
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decomp.io
Data and paper available


