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Hypothesis Only NLI

Hypothesis: A woman is sleeping

entailment neutral contradiction

Premise:
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Why is that a “contradiction”?
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Why is that a “contradiction”?

Can a model pick up on this?
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Why is that a “contradiction”?

Can a model pick up on this?

What does this say about NLI?
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Do NLI datasets contain 
statistical irregularities that 

allow hypothesis only models
to outperform each

dataset’s specific prior?
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Outline

● Introduction

● Hypothesis Only Model
● Data under investigation
● Experiments & Results
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Typical NLI Model
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Hypothesis Only Model
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Hypothesis Only Model
Goal:

Representative of 
common NLI research
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Hypothesis Only Model
Goal:

Representative of 
common NLI research

No modeling 
contribution
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Hypothesis Only Model

Modified Infersent 
(Conneau et. al. 2017)
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Hypothesis Only Model

Bidirectional LSTM

Max Pooling

GloVe embeddings
(Pennington et. al. 2015) 

Modified Infersent 
(Conneau et. al. 2017)

MLP with 1 
hidden layer
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Human is:

Human elicited
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Human elicited
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Human is:
1. shown context (premise)
2. generates hypothesis for each label:

entailed, neutral, contradiction

Human elicited
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Human is:
1. shown context (premise)
2. generates hypothesis for each label:

entailed, neutral, contradiction

Used in SNLI & Multi-NLI creation 

Human elicited
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Human elicited - Example
Premise: A woman is reading with a child

entailment neutral contradiction
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Human elicited - Example
Premise: A woman is reading with a child

entailment neutral contradiction
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Human elicited - Example
Premise: A woman is reading with a child

Hypothesis: A woman is sleeping

entailment neutral contradiction
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Human is:
1. shown context and hypothesis pair

Human judged
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Human is:
1. shown context and hypothesis pair
2. assigns a label to the pair

Human judged
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Human is:
1. shown context and hypothesis pair
2. assigns a label to the pair

Used in: 
SICK (Marelli et. al. 2014), Add-1 (Pavlick et. al. 2016),
MPE (Lai et. al. 2017),  JOCI (Zhang et. al. 2017),
SciTail (Khot et. al. 2018)

Human judged
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Minimize human annotation involvement

Recast
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Minimize human annotation involvement

Annotations from existing NLU datasets 
recast as NLI

Recast
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Minimize human annotation involvement

Annotations from existing NLU datasets 
recast as NLI

White et. al. (2017) recast:
SPR (Reisinger et. al. 2016)
FN+ (Pavlick et. al. 2015)
DPR (Rahman & Ng 2012)

Recast
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Recast Semantic Proto-Roles
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Premise: He blames imports
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Recast Semantic Proto-Roles
Premise: He blames imports

Hypothesis: Imports were sentient

entailed not-entailed
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Human Elicited

Human Judged

Recast

3 Types of NLI datasets
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Outline

● Introduction

● Hypothesis Only Model
● Data under investigation
● Experiments & Results
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Experimental Setup

54



Train a hypothesis only model on
each dataset

Experimental Setup
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Train a hypothesis only model on 
each dataset

Test the model on each specific dataset

Experimental Setup
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Train a hypothesis only model on
each dataset

Test the model on each specific dataset

Compare hypothesis only model 
to majority baseline

Experimental Setup
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Results across 10 datasets
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Results across 10 datasets
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Results across 10 datasets
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Statistical Irregularities 
or 

Background Knowledge?
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Human Elicited Results
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Origin of SNLI
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Origin of SNLI

(Young et. al. 2014)
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Origin of SNLI

(Young et. al. 2014)
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A woman is sleeping
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Origin of SNLI

(Young et. al. 2014)
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Hypothesis: A woman is sleeping

Premises:
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Hypothesis: A woman is sleeping

Premises:
A woman sings a song while playing piano
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Hypothesis: A woman is sleeping

Premises:
This woman is laughing at her baby shower
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Hypothesis: A woman is sleeping

Premises:
A woman with glasses is playing jenga
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Why is she 
sleeping?
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Studies in eliciting norming data 
are prone to repeated 

responses across subjects
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Descriptions of “dog”:

-- McRae et al. (2005)

Elicitation Bias
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Descriptions of “dog”:
- barks

-- McRae et al. (2005)

Elicitation Bias
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Descriptions of “dog”:
- barks
- has a tail

-- McRae et al. (2005)

Elicitation Bias
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Descriptions of “dog”:
- barks
- has a tail
- larger than a tulip

-- McRae et al. (2005)

Elicitation Bias
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Descriptions of “dog”:
- barks
- has a tail
- larger than a tulip
- moves faster than 

an infant -- McRae et al. (2005)

Elicitation Bias
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“Features such as is larger than a tulip or 
moves faster than an infant, although
logically possible, do not occur in human 
responses … people are capable of 
verifying that a dog is larger than a 
pencil.” -- McRae et al. (2005)

Elicitation Bias
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Studies in eliciting norming data 
are prone to repeated 

responses across subjects

83

(see discussion in §2 of Zhang et. al. (2017)
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Inferring 
labels from 

single words



“Give away” words
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“Give away” words
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Words correlated with contradictions
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Words correlated with contradictions
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Word Frequency

sleeping 0.88 108

asleep 0.91 43

sleeps 0.95 20



Words correlated with contradictions
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Word Frequency

Nobody 1.00 52

alone 0.90 50

no 0.84 31

empty 0.93 28



Words correlated with contradictions
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Word Frequency

driving 0.81 53

eats 0.83 24



Recast NLI
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Semantic Proto-Roles

Dowty (1990)’s fine-grained version 
of thematic roles

Proto-Agent & Proto-Patient properties

Dataset released by Reisinger et. al. (2015) 
& White et. al. (2016)
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Recast Semantic Proto-Roles
Premise: He blames imports

Hypothesis: Imports were sentient

entailed not-entailed
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Recast Semantic Proto-Roles
Premise: He blames imports

Hypothesis: Imports existed after the blaming

entailed not-entailed
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Hypothesis Only SPR Results
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SPR Properties
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Is this surprising? 
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Inherent Likelihood of SPR properties
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- Experts were sentient
- Mr. Falls was sentient
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Is this surprising? 

Inherent Likelihood of SPR properties

Hypotheses: 
- Experts were sentient
- Mr. Falls was sentient
- The campaign was sentient  

- probably not
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Is this surprising? 

Inherent Likelihood of SPR properties

Hypotheses: 
- Experts were sentient
- Mr. Falls was sentient
- The campaign was sentient

- probably not
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Hypothesis Only Recast FN+ Results
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Hypothesis Only Recast FN+ Results
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Recast FN+ 
(Paraphrastic Inference)
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Recast FN+ 
(Paraphrastic Inference)
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Recast FN+ 
(Paraphrastic Inference)
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Swap single tokens based on PPDB

entailed: high scoring paraphrase



Premise: Jerusalem fell to the Ottomans in 
1517, remaining under their control for 400 
years

control -> supervision
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Entailed FN+ Example



Premise: Jerusalem fell to the Ottomans in 
1517, remaining under their control for 400 
years

Hypothesis: Jerusalem fell to the Ottomans in 
1517, remaining under their supervision for 
400 years

114
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Recast FN+ 
(Paraphrastic Inference)

115

Swap single tokens based on PPDB

not-entailed: low scoring paraphrase



Premise: Jerusalem fell to the Ottomans in 
1517, remaining under their control for 400 
years

control -> regulate
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Not-Entailed FN+ Example



Premise: Jerusalem fell to the Ottomans in 
1517, remaining under their control for 400 
years

Hypothesis: Jerusalem fell to the Ottomans in 
1517, remaining under their regulate for 400 
years
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Not-Entailed FN+ Example



Statistical Irregularities 
or 

Background Knowledge
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FN+



Entailed Hypothesis: Jerusalem fell to the 
Ottomans in 1517, remaining under their 
supervision for 400 years

Not-Entailed Hypothesis: Jerusalem fell to the 
Ottomans in 1517, remaining under their 
regulate for 400 years
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FN+ Hypotheses



Statistical Irregularities 
or 

Background Knowledge
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FN+



Purpose of NLI (as NLP Task)
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Purpose of NLI (as NLP Task)

Evaluate a model for NLU
FraCas (Cooper et. al. 1996)

RTE (Glickman 2006, i.a.)

Train a model for NLU
SNLI (Bowman et. al. 2015)

Multi-NLI (Williams et. al. 2018)
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Prior Non-archival Work

Sitzmann, Marek, Keselman (Stanford 
Course Project 2016)
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Concurrent Work

Masatoshi Tsuchiya (LREC2018)

Gururangan, Swayamdipta, Levy, Schwartz, 
Bowman, and Smith (NAACL 2018)
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Concurrent Work

“Hypothesis sentences of the SNLI corpus 
are composed by human workers, but all 
sentences of the SICK corpus are derived 
from original sentences using hand-crafted 
rules. We think that this difference may 
be a cause of the hidden bias revealed 
by this paper”

Tsuchiya (LREC2018)
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Concurrent Work

“We show that, in a significant portion of 
such data, this protocol leaves clues 
that make it possible to identify the 
label by looking only at the hypothesis, 
without observing the premise”

Gururangan et. al. (NAACL 2018)
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Summary

Human elicitation has biases but might not 
be statistical irregularities

Recasting methods may create
statistical irregularities

Compare NLI models with corresponding
hypothesis only version
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