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Why iIs that a “contradiction™?
Can a model pick up on this?

What does this say about NLI?



Do NLI datasets contain
statistical irreqularities that
allow hypothesis only models
to outperform each
dataset’s specific prior?
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Human elicited

Human is:

1. shown context (premise)
2. generates hypothesis for each label:

entailed, neutral, contradiction

Used in SNLI & Multi-NLI creation
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Human elicited - Example

Premise: A woman is reading with a child
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Human judged

Human is:

1. shown context and hypothesis pair
2. assigns a label to the pair

Used in:
SICK (Marelli et. al. 2014), Add-1 (Pavlick et. al. 2016),
MPE (Lai et. al. 2017), JOCI (Zhang et. al. 2017),
SciTail (Khot et. al. 2018)
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Recast

Minimize human annotation involvement

Annotations from existing NLU datasets
recast as NLI

White et. al. (2017) recast:
SPR (Reisinger et. al. 20106)
FN+ (Pavlick et. al. 2015)
DPR (Rahman & Ng 2012)
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Recast Semantic Proto-Roles

Premise: He blames imports

Hypothesis: Imports were sentient

entailed not-entailed
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3 Types of NLI datasets

Human Elicited

Human Judgead
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-xperimental Setup

Train a hypothesis only model on
each dataset

Test the model on each specific dataset

Compare hypothesis only model
to majority baseline
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Results across 10 datasets

DEV TEST
Dataset Hyp-Only MAJ REL-ABS REL-% Hyp-Only MAJ REL-ABS REL-% Baseline SOTA
Recast
DPR 50.21 50.21 0.00 0.00 49.95 49.95 0.00 0.00 49.5 49.5
SPR 86.21 65.27 +20.94 +32.08 86.57 65.44 +21.13 +32.29 80.6 80.6
FN+ 62.43 56.79 +5.64 +9.31 61.11 57.48 +3.63 +6.32 80.5 80.5
Human Judged
ADD-1 75.10 75.10 0.00 0.00 85.27 85.27 0.00 0.00 92.2 92.2
SciTail 66.56 50.38 +16.18 +32.12 66.56 60.04 +6.52 +10.86 70.6 77.3
SICK 56.76 56.76 0.00 0.00 56.87 56.87 0.00 0.00 56.87 84.6
MPE 40.20 40.20 0.00 0.00 42.40 42.40 0.00 0.00 41.7 56.3
JOCI 61.64 57.74 +3.90 +6.75 62.61 57.26 +5.35 +9.34 - -
Human Elicited
SNLI 69.17 33.82 +35.35 +104.52 69.00 34.28 +34.72 +101.28 78.2 89.3
MNLI-1 55.52 35.45 +20.07 +56.61 — 35.6 -— 72.3 80.60
MNLI-2 55.18 35.22 +19.96 +56.67 - 36.5 — - 72.1 83.21

JOHNS HOPKINS

UNIVERSITY

59



Results across 10 datasets

Dataset Hyp-Only MAJ REL-% QHyp-Only MAJ Baseline SOTA
Recast
DPR 50.21 50.21 0.00 49.95 49.95 49.5 49.5
SPR 86.21 65.27 +32.08 86.57 65.44 80.6 80.6
FN+ 62.43 56.79 +9.31 61.11 57.48 80.5 80.5
Hufnan Judged
ADD-1 75.10 75.10 0.00 85.27 85.27 92.2 92.2
SciTail 66.56 50.38 +32.12 66.56 60.04 70.6 77.3
SICK 56.76 56.76 0.00 56.87 56.87 56.87 84.6
MPE 40.20 40.20 0.00 42.40 42.40 41.7 56.3
JOCI 61.64 57.74 +6.75 62.61 57.26 - -
Hufhan Elicited
SNLI 69.17 33.82 +104.52 69.00 34.28 78.2 89.3
MNLI-1 55.52 35.45 +56.61 — 35.6 72.3 80.60
MNLI-2 55.18 35.22 +56.67 - 36.5 72.1 83.21

<

T JOHNS HOPKINS

UNIVERSITY

60



Results across 10 datasets

DEV TEST
Dataset Hyp-Only MAJ REL-ABS REL-% Hyp-Only MAJ REL-ABS REL-% Baseline SOTA

Recast

+32.08 86.57

+9.31 61.11
Human Judged
ADD-1 75.10 75.10 0.00 0.00 85.27 85.27 0.00 0.00 92.2 92.2
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(Young et. al. 2014)
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Premises:
A woman sings a song while playing piano

Hypothesis: A woman 1s sleeping
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Premises:
This woman 1s laughing at her baby shower
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Premises:
A woman with glasses 1s playing jenga

Hypothesis: A woman 1s sleeping
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Why Is she
sleeping?



Studies in eliciting norming data
are prone to repeated
responses across subjects
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Elicitation Bias
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Elicitation Bias

Descriptions of “dog”:

- barks
- has a tall
- larger than a tulip

- moves faster than
an Infant
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-- McRae et al. (2005)
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Elicitation Bias

“Features such as is larger than a tulip or
moves faster than an infant, although
logically possible, do not occur in human
responses ... people are capable of
verifying that a dog is larger than a
pencil.” -- McRae et al. (2005)
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Studies in eliciting norming data
are prone to repeated
responses across subjects

(see discussion in §2 of Zhang et. al. (2017)



Inferring
labels from
single words
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Words correlated with contradictions
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Words correlated with contradictions

o plle)

sleeping 0.88 108
asleep 0.91 43
sleeps 0.95 20
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Words correlated with contradictions

“Word (110

Nobody 1.00 952
alone 0.90 50
no 0.84 31
empty 0.93 28
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Words correlated with contradictions

“Word (110

driving 0.81 93
eats 0.83 24
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Recast NLI

DEV TEST
Dataset Hyp-Only MAJ REL-ABS REL-% Hyp-Only MAJ REL-ABS REL-% Baseline SOTA

Recast

Human Judged
ADD-1 75.10 75.10 0.00 0.00 85.27 85.27 0.00 0.00 92.2 92.2
SciTail 66.56 50.38 +16.18 +32.12 66.56 60.04 +6.52 +10.86 70.6 77.3
SICK 56.76 56.76 0.00 0.00 56.87 56.87 0.00 0.00 56.87 84.6
MPE 40.20 40.20 0.00 0.00 42.40 42.40 0.00 0.00 41.7 56.3
JOCI 61.64 57.74 +3.90 +6.75 62.61 57.26 +5.35 +9.34 - -
Human Elicited
SNLI 69.17 33.82 +35.35 +104.52 69.00 34.28 +34.72 +101.28 78.2 89.3
MNLI-1 55.52 35.45 +20.07 +56.61 - 35.6 - 72.3 80.60
MNLI-2 55.18 35.22 +19.96 +56.67 - 36.5 - - 72.1 83.21
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Semantic Proto-Roles

Dowty (1990)’s fine-grained version
of thematic roles

Proto-Agent & Proto-Patient properties

Dataset released by Reisinger et. al. (2015)
& White et. al. (20106)
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Recast Semantic Proto-Roles

Premise: He blames imports

Hypothesis: Imports were sentient

entailed not-entailed
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Recast Semantic Proto-Roles

Premise: He blames imports

Hypothesis: Imports existed after the blaming

entailed not-entailed

JOHNS HOPKINS o

UNIVERSITY



Hypothesis Only SPR Results
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s this surprising?
Inherent Likelihood of SPR properties
Hypotheses:
- EXperts were sentient

- Mr. Falls was sentient
- The campaign was sentient
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s this surprising?
Inherent Likelihood of SPR properties

Hypotheses:
- EXperts were sentient
- Mr. Falls was sentient
- The campaign was sentient
- probably not
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s this surprising? No
Inherent Likelihood of SPR properties

Hypotheses:
- EXperts were sentient
- Mr. Falls was sentient
- The campaign was sentient
- probably not
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Hypothesis Only Recast FN+
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Recast FN
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Recast FN+
(Paraphrastic Inference)

Swap single tokens based on PPDB

entailed: high scoring paraphrase



Entalled FN+ Example

Premise: Jerusalem fell to the Ottomans in
1617, remaining under their control for 400
years

control -> supervision
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Entailed FN+ Example

Premise: Jerusalem fell to the Ottomans in

1617, remaining under their control for 400
years

Hypothesis: Jerusalem fell to the Ottomans in

1617, remaining under their supervision for
400 years
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Recast FN+
(Paraphrastic Inference)

Swap single tokens based on PPDB

not-entailed: low scoring paraphrase



Not-Entailed FN+ Example

Premise: Jerusalem fell to the Ottomans in
1617, remaining under their control for 400
years

control -> regulate
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Not-Entailed FN+ Example

Premise: Jerusalem fell to the Ottomans in
1617, remaining under their control for 400

years

Hypothesis: Jerusalem fell to the Ottomans in
1517, remaining under their requlate for 400

years
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Statistical [rregularities
or
Background Knowledge
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FN+ Hypotheses

Entailed Hypothesis: Jerusalem fell to the
Ottomans in 15617, remaining under their
supervision for 400 years

Not-Entailed Hypothesis: Jerusalem fell to the
Ottomans in 15617, remaining under their
requlate for 400 years
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Statistical Irregularities
or
Background Knowledge
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Purpose of NLI (as NLP Task)

Evaluate a model for NLU
FraCas (Cooper et. al. 19906)
RTE (Glickman 20086, i.a.)

Train a model for NLU
SNLI (Bowman et. al. 2015)
Multi-NLI (Williams et. al. 2018)



Prior Non-archival Work

Sitzmann, Marek, Keselman (Stanford
Course Project 2016)



Concurrent Work

Masatoshi Tsuchiya (LREC2018)

Gururangan, Swayamdipta, Levy, Schwartz,
Bowman, and Smith (NAACL 2018)



Concurrent Work

“Hypothesis sentences of the SNLI corpus
are composed by human workers, but all
sentences of the SICK corpus are derived
from original sentences using hand-crafted
rules. We think that this difference may
be a cause of the hidden bias revealed
by this paper”

Tsuchiya (LREC2018)



Concurrent Work

“We show that, in a significant portion of
such data, this protocol leaves clues
that make it possible to identify the
label by looking only at the hypothesis,
without observing the premise”

Gururangan et. al. (NAACL 2018)



Summary

Human elicitation has biases but might not
be statistical irregularities

Recasting methods may create
statistical irregularities

Compare NLI models with corresponding
hypothesis only version
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