Hypothesis Only Models in Natural Language Inference

*SEM 2018

Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, Benjamin Van Durme

Co-Authors

Rachel Rudinger Aparajita Haldar

Jason Naradowsky

Benjamin Van Durme

Premise: The brown cat ran

Hypothesis: The animal moved

Premise: The brown cat ran

Hypothesis: The animal moved

entailment neutral contradiction

Premise: The brown cat ran

Hypothesis: The animal moved

neutral contra

contradiction

Premise: *The brown cat ran*

Hypothesis: *The animal moved*

neutral contradiction

Premise: *The brown cat ran* Hypothesis: *The animal moved*

neutral contradiction

Hypothesis: A woman is sleeping

Hypothesis: A woman is sleeping

Hypothesis Only NLI Premise:

Hypothesis: A woman is sleeping

entailment neutral contradiction

Hypothesis: A woman is sleeping

entailment

neutral

Why is that a "contradiction"?

Why is that a "contradiction"?

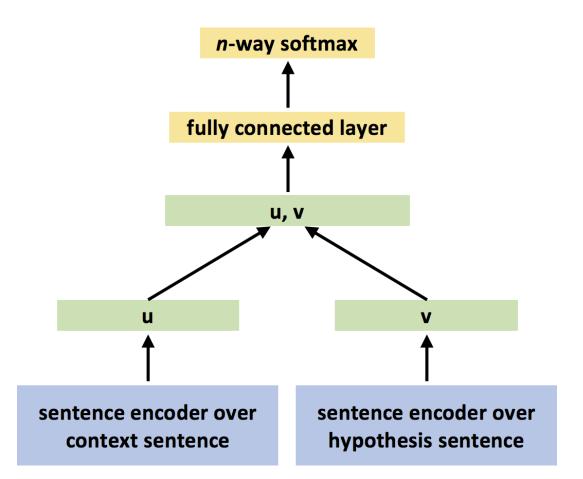
Can a model pick up on this?

Why is that a "contradiction"?

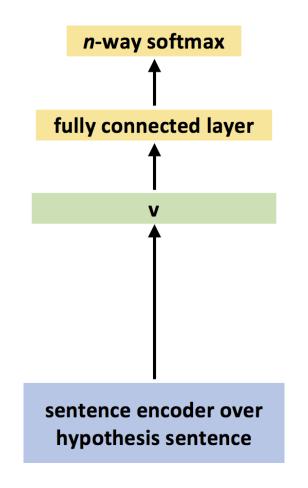
Can a model pick up on this?

What does this say about NLI?

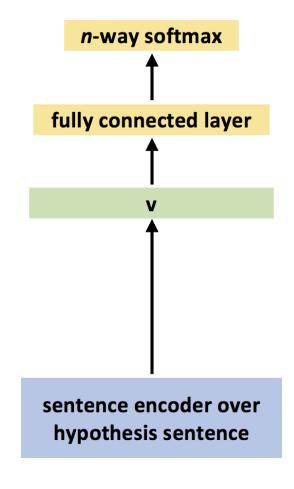
Do NLI datasets contain statistical irregularities that allow hypothesis only models to outperform each dataset's specific prior?

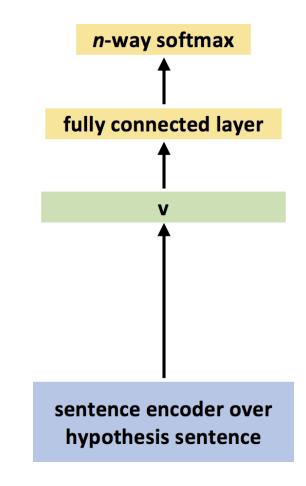


Outline


- Introduction
- Hypothesis Only Model
- Data under investigation
- Experiments & Results

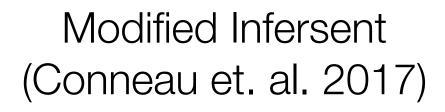
Typical NLI Model

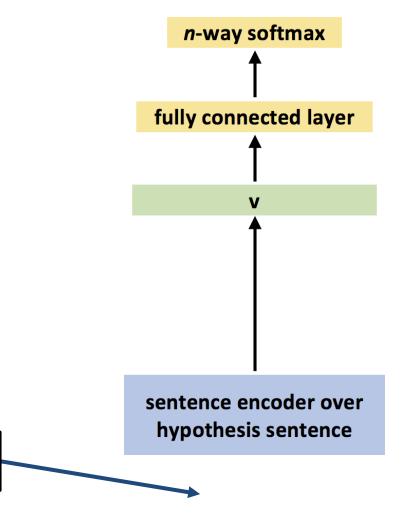


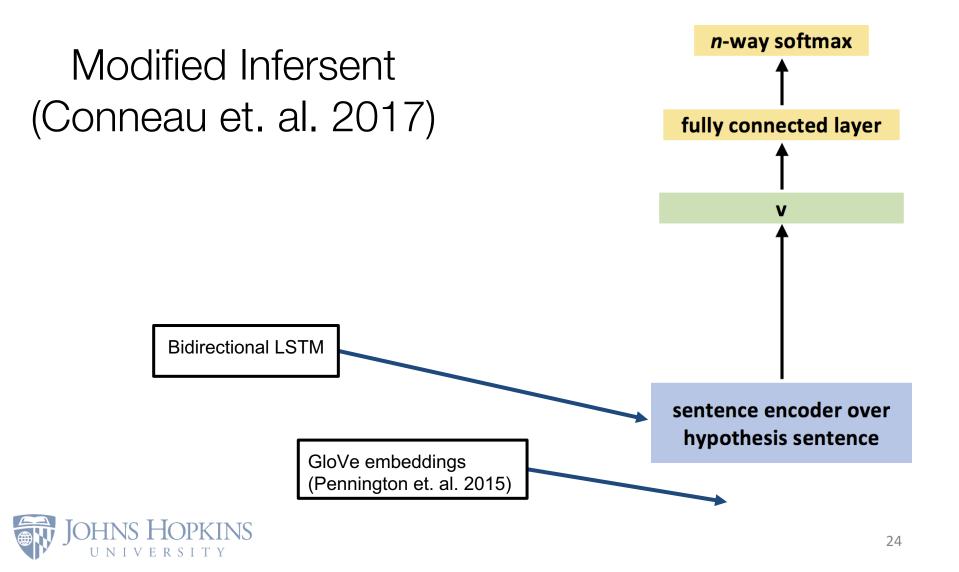

Goal: Representative of common NLI research

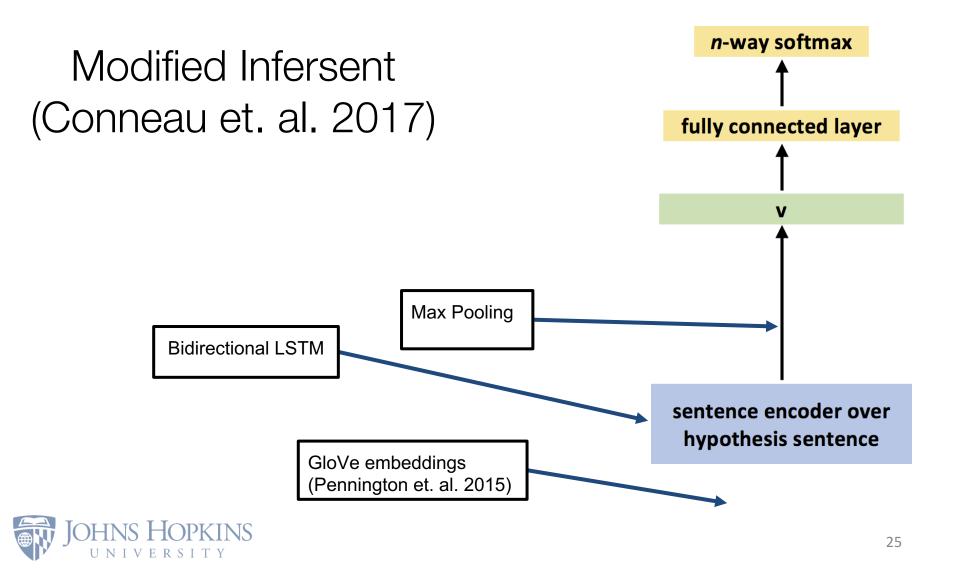

Goal: Representative of common NLI research

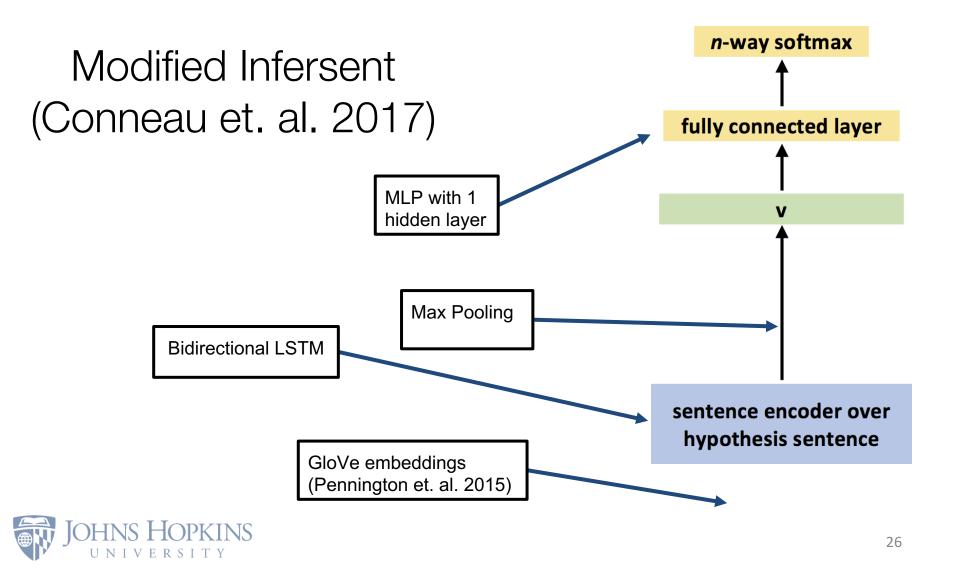
No modeling contribution


Modified Infersent (Conneau et. al. 2017)




GloVe embeddings


(Pennington et. al. 2015)



Outline

- Introduction
- Hypothesis Only Model
- Data under investigation
- Experiments & Results

Human is:

Human is:

1. shown context (premise)

Human is:

- 1. shown context (premise)
- 2. generates hypothesis for each label: *entailed, neutral, contradiction*

Human is:

- 1. shown context (premise)
- 2. generates hypothesis for each label: *entailed, neutral, contradiction*

Used in SNLI & Multi-NLI creation

Human elicited - Example

Premise: A woman is reading with a child

entailment neutral contradiction

Human elicited - Example

Premise: A woman is reading with a child

contradiction

Human elicited - Example

Premise: A woman is reading with a child

Hypothesis: A woman is sleeping

entailment

-neutral-

contradiction

Human judged

Human is:

Human judged

Human is:

1. shown context and hypothesis pair

Human judged

Human is:

- 1. shown context and hypothesis pair
- 2. assigns a label to the pair

Human judged

Human is:

- 1. shown context and hypothesis pair
- 2. assigns a label to the pair

Used in:

SICK (Marelli et. al. 2014), Add-1 (Pavlick et. al. 2016), MPE (Lai et. al. 2017), JOCI (Zhang et. al. 2017), SciTail (Khot et. al. 2018)

Minimize human annotation involvement

Minimize human annotation involvement

Annotations from existing NLU datasets recast as NLI

Minimize human annotation involvement

Annotations from existing NLU datasets recast as NLI

White et. al. (2017) recast: SPR (Reisinger et. al. 2016) FN+ (Pavlick et. al. 2015) DPR (Rahman & Ng 2012)

Premise: He blames imports

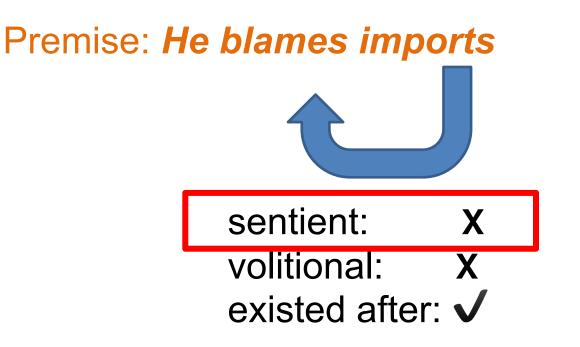
Premise: *He blames imports*

Premise: He blames imports

sentient: volitional: existed after:

Premise: *He blames imports*

sentient: X volitional: existed after:



Premise: He blames imports sentient: X volitional: X existed after:

Premise: He blames imports sentient: X volitional: X existed after: ✓

Premise: He blames imports

Hypothesis: Imports were sentient

entailed

not-entailed

3 Types of NLI datasets

Human Elicited

Human Judged

Recast

Outline

- Introduction
- Hypothesis Only Model
- Data under investigation
- Experiments & Results

Train a hypothesis only model on each dataset

Train a hypothesis only model on each dataset

Test the model on each specific dataset

Train a hypothesis only model on each dataset

Test the model on each specific dataset

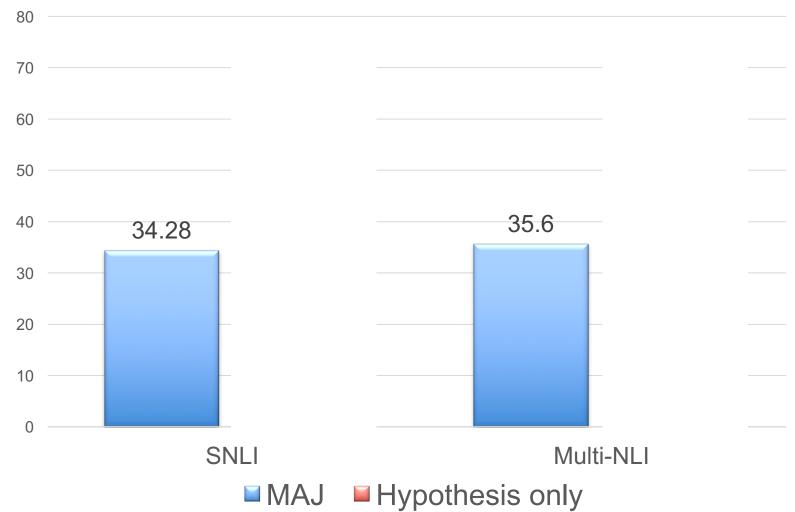
Compare hypothesis only model to majority baseline

		DEV		TEST							
Dataset	Hyp-Only	MAJ	REL-ABS	REL-%	Hyp-Only	MAJ	REL-ABS	REL-%	Baseline	SOTA	
	Recast										
DPR	50.21	50.21	0.00	0.00	49.95	49.95	0.00	0.00	49.5	49.5	
SPR	86.21	65.27	+20.94	+32.08	86.57	65.44	+21.13	+32.29	80.6	80.6	
FN+	62.43	56.79	+5.64	+9.31	61.11	57.48	+3.63	+6.32	80.5	80.5	
	Human Judged										
ADD-1	75.10	75.10	0.00	0.00	85.27	85.27	0.00	0.00	92.2	92.2	
SciTail	66.56	50.38	+16.18	+32.12	66.56	60.04	+6.52	+10.86	70.6	77.3	
SICK	56.76	56.76	0.00	0.00	56.87	56.87	0.00	0.00	56.87	84.6	
MPE	40.20	40.20	0.00	0.00	42.40	42.40	0.00	0.00	41.7	56.3	
JOCI	61.64	57.74	+3.90	+6.75	62.61	57.26	+5.35	+9.34	-	-	
Human Elicited											
SNLI	69.17	33.82	+35.35	+104.52	69.00	34.28	+34.72	+101.28	78.2	89.3	
MNLI-1	55.52	35.45	+20.07	+56.61	_	35.6			72.3	80.60	
MNLI-2	55.18	35.22	+19.96	+56.67	-	36.5	-	-	72.1	83.21	

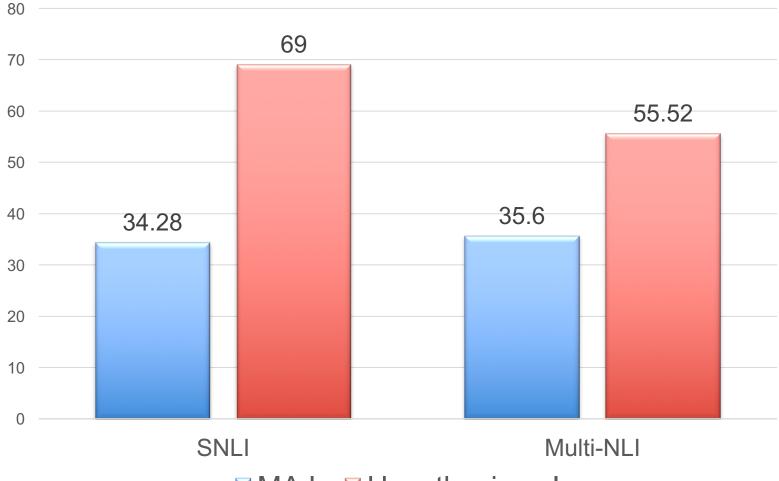
_) EV					TEST				
Dataset	Hyp-Only	MAJ	REL-ABS	REL-%	Hyp-Only	MAJ	REL-ABS	REL-%	Baseline	SOTA
					Recast					
DPR	50.21	50.21	0.00	0.00	49.95	49.95	0.00	0.00	49.5	49.5
SPR	86.21	65.27	+20.94	+32.08	86.57	65.44	+21.13	+32.29	80.6	80.6
FN+	62.43	56.79	+5.64	+9.31	61.11	57.48	+3.63	+6.32	80.5	80.5
				Hu	nan Judged					
ADD-1	75.10	75.10	0.00	0.00	85.27	85.27	0.00	0.00	92.2	92.2
SciTail	66.56	50.38	+16.18	+32.12	66.56	60.04	+6.52	+10.86	70.6	77.3
SICK	56.76	56.76	0.00	0.00	56.87	56.87	0.00	0.00	56.87	84.6
MPE	40.20	40.20	0.00	0.00	42.40	42.40	0.00	0.00	41.7	56.3
JOCI	61.64	57.74	+3.90	+6.75	62.61	57.26	+5.35	+9.34	-	-
				Hu	han Elicited					
SNLI	69.17	33.82	+35.35	+104.52	69.00	34.28	+34.72	+101.28	78.2	89.3
MNLI-1	55.52	35.45	+20.07	+56.61	-	35.6			72.3	80.60
MNLI-2	55.18	35.22	+19.96	+56.67	-	36.5	-	-	72.1	83.21

DEV										
Dataset	Hyp-Only	MAJ	REL-ABS	REL-%	Hyp-Only	MAJ	REL-ABS	REL-%	Baseline	SOTA
Recast										
קקי	50.21	50.21	0.00	0.00	40.05	40.05	0.00	0.00	40.5	40.5
SPR FN+	86.21 62.43	65.27 56.79	+20.94 +5.64	+32.08 +9.31	86.57 61.11	65.44 57.48	+21.13 +3.63	+32.29 +6.32	80.6 80.5	80.6 80.5
Human Judged										
ADD-1	75.10	75.10	0.00	0.00	85.27	85.27	0.00	0.00	92.2	92.2
SciTail	66.56	50.38	+16.18	+32.12	66.56	60.04	+6.52	+10.86	70.6	77.3
SICK	56.76	56.76	0.00	0.00	56.87	56.87	0.00	0.00	56.87	84.6
MPE	40.20	40.20	0.00	0.00	42.40	42.40	0.00	0.00	41.7	56.3
JOCI	61.64	57.74	+3.90	+6.75	62.61	57.26	+5.35	+9.34	-	-
Human Elicited										
SNLI	69.17	33.82	+35.35	+104.52	69.00	34.28	+34.72	+101.28	78.2	89.3
MNLI-2	55.18	35.22	+19.96	+56.67	_	36.5	_	_	72.1	83.21

Statistical Irregularities or Background Knowledge?



Human Elicited Results



Human Elicited Results

Human Elicited Results

■ MAJ ■ Hypothesis only

Origin of SNLI

Origin of SNLI

(Young et. al. 2014)

Origin of SNLI

(Young et. al. 2014)

A woman is sleeping

Hypothesis: A woman is sleeping

Premises:

A woman sings a song while playing piano

Hypothesis: A woman is sleeping

This woman is laughing at her baby shower

Hypothesis: A woman is sleeping

A woman with glasses is playing jenga

Hypothesis: A woman is sleeping

Why is she sleeping?

Studies in eliciting norming data are prone to repeated responses across subjects

Descriptions of "dog":

Descriptions of "dog":

- barks

Descriptions of "dog":

- barks
- has a tail

Descriptions of "dog":

- barks
- has a tail
- larger than a tulip

Descriptions of "dog":

- barks
- has a tail
- larger than a tulip
- moves faster than an infant

"Features such as **is larger than a tulip** or **moves faster than an infant**, although logically possible, do not occur in human responses ... people are capable of **verifying** that a **dog is larger than a pencil**." -- McRae et al. (2005)

Studies in eliciting norming data are prone to repeated responses across subjects

(see discussion in §2 of Zhang et. al. (2017)

Inferring labels from single words

"Give away" words count(w, l)p(l|w) =count(w)

"Give away" words count(w, l)p(l|w) =count(w) $p(l|w) > \alpha$

Word	p(l w)	Frequency		

Word	p(l w)	Frequency			
sleeping	0.88	108			
asleep	0.91	43			
sleeps	0.95	20			

Word	p(l w)	Frequency			
Nobody	1.00	52			
alone	0.90	50			
no	0.84	31			
empty	0.93	28			

Word	p(l w)	Frequency			
driving	0.81	53			
eats	0.83	24			

Recast NLI

	DEV				TEST					
Dataset	Hyp-Only	MAJ	REL-ABS	REL-%	Hyp-Only	MAJ	REL-ABS	REL-%	Baseline	SOTA
Recast										
קקת	50.21	50.21	0.00	0.00	40.05	40.05	0.00	0.00	40.5	40.5
SPR FN+	86.21 62.43	65.27 56.79	+20.94 +5.64	+32.08 +9.31	86.57 61.11	65.44 57.48	+21.13 +3.63	+32.29 +6.32	80.6 80.5	80.6 80.5
	Human Judged									
ADD-1	75.10	75.10	0.00	0.00	85.27	85.27	0.00	0.00	92.2	92.2
SciTail	66.56	50.38	+16.18	+32.12	66.56	60.04	+6.52	+10.86	70.6	77.3
SICK	56.76	56.76	0.00	0.00	56.87	56.87	0.00	0.00	56.87	84.6
MPE	40.20	40.20	0.00	0.00	42.40	42.40	0.00	0.00	41.7	56.3
JOCI	61.64	57.74	+3.90	+6.75	62.61	57.26	+5.35	+9.34	-	-
	Human Elicited									
SNLI	69.17	33.82	+35.35	+104.52	69.00	34.28	+34.72	+101.28	78.2	89.3
MNLI-1	55.52	35.45	+20.07	+56.61	_	35.6			72.3	80.60
MNLI-2	55.18	35.22	+19.96	+56.67	-	36.5	-	-	72.1	83.21

Semantic Proto-Roles

Dowty (1990)'s fine-grained version of thematic roles

Proto-Agent & Proto-Patient properties

Dataset released by Reisinger et. al. (2015) & White et. al. (2016)

Recast Semantic Proto-Roles

Premise: He blames imports

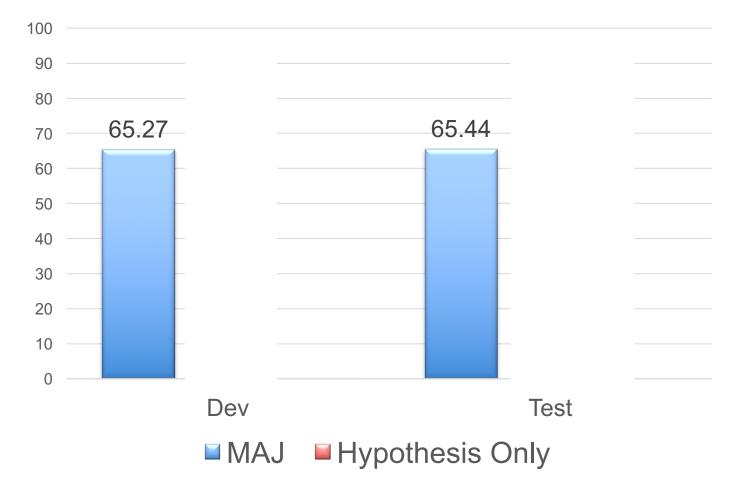
Hypothesis: Imports were sentient

entailed

not-entailed

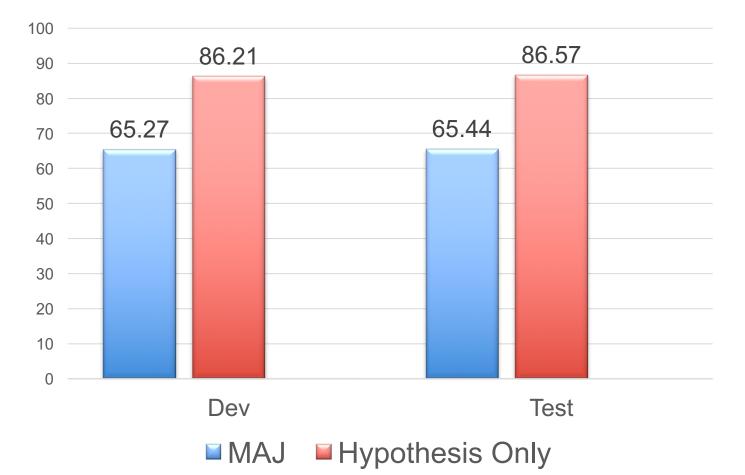
Recast Semantic Proto-Roles

Premise: He blames imports

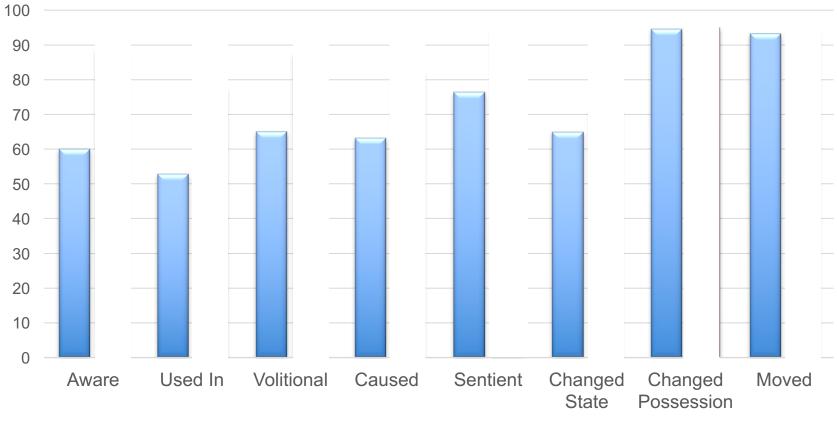

Hypothesis: Imports existed after the blaming

entailed

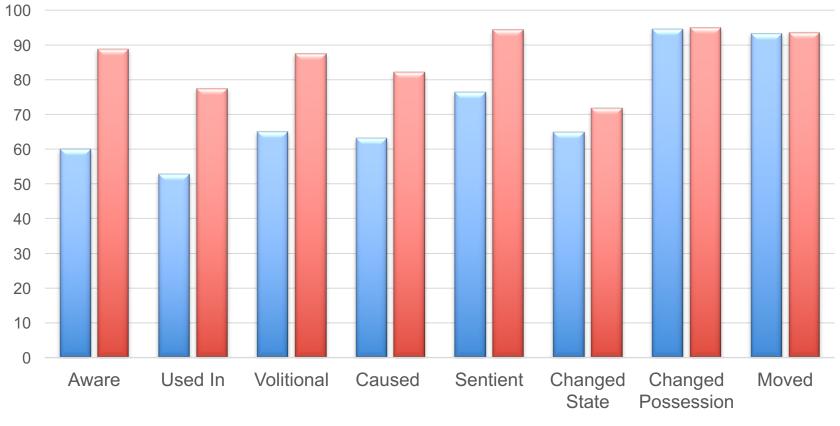
not-entailed



Hypothesis Only SPR Results



Hypothesis Only SPR Results


SPR Properties

■ MAJ ■ Hypothesis Only

SPR Properties

■ MAJ ■ Hypothesis Only

Inherent Likelihood of SPR properties

Inherent Likelihood of SPR properties

Inherent Likelihood of SPR properties

Hypotheses:

- Experts were sentient

Inherent Likelihood of SPR properties

- Experts were sentient
- Mr. Falls was sentient

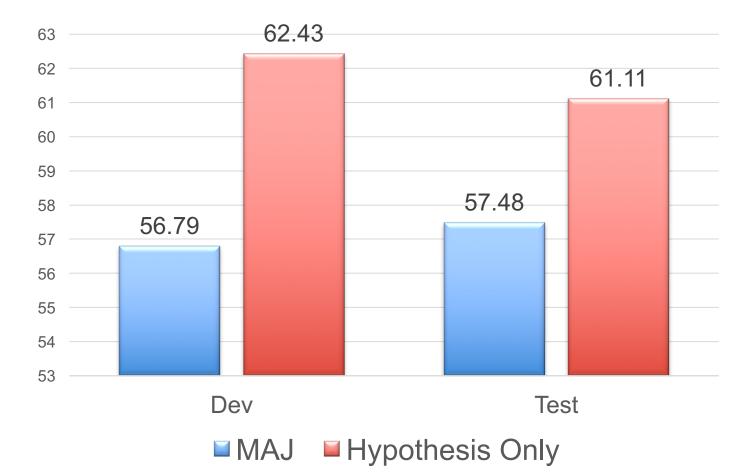
Inherent Likelihood of SPR properties

- Experts were sentient
- Mr. Falls was sentient
- The campaign was sentient

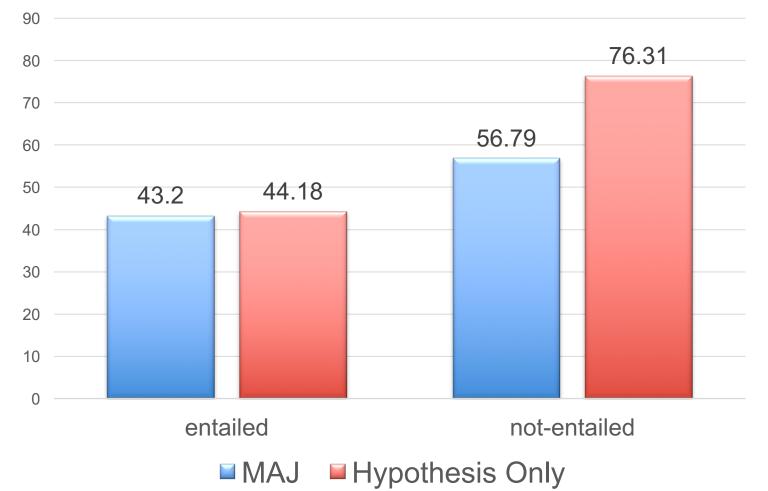
Inherent Likelihood of SPR properties

- Experts were sentient
- Mr. Falls was sentient
- The campaign was sentient
 - probably not

Inherent Likelihood of SPR properties


- Experts were sentient
- Mr. Falls was sentient
- The campaign was sentient
 - probably not

Hypothesis Only Recast FN+ Results



Hypothesis Only Recast FN+ Results

Recast FN+ Results by Label

Recast FN+ (Paraphrastic Inference)

Recast FN+ (Paraphrastic Inference)

Swap single tokens based on PPDB

Recast FN+ (Paraphrastic Inference)

Swap single tokens based on PPDB

entailed: high scoring paraphrase

Entailed FN+ Example

Premise: Jerusalem fell to the Ottomans in 1517, remaining under their <u>control</u> for 400 years

control -> supervision

Entailed FN+ Example

Premise: Jerusalem fell to the Ottomans in 1517, remaining under their <u>control</u> for 400 years

Hypothesis: Jerusalem fell to the Ottomans in 1517, remaining under their <u>supervision</u> for 400 years

Recast FN+ (Paraphrastic Inference)

Swap single tokens based on PPDB

not-entailed: low scoring paraphrase

Not-Entailed FN+ Example

Premise: Jerusalem fell to the Ottomans in 1517, remaining under their <u>control</u> for 400 years

control -> regulate

Not-Entailed FN+ Example

Premise: Jerusalem fell to the Ottomans in 1517, remaining under their <u>control</u> for 400 years

Hypothesis: *Jerusalem fell to the Ottomans in* 1517, remaining under their **<u>regulate</u>** for 400 years

FN+ Statistical Irregularities or Background Knowledge

FN+ Hypotheses

Entailed Hypothesis: Jerusalem fell to the Ottomans in 1517, remaining under their **supervision** for 400 years

Not-Entailed Hypothesis: *Jerusalem fell to the Ottomans in 1517, remaining under their* <u>regulate</u> for 400 years

FN+

Statistical Irregularities or Background Knowledge

Evaluate a model for NLU

Evaluate a model for NLU *FraCas* (Cooper et. al. 1996) *RTE* (Glickman 2006, *i.a.*)

Evaluate a model for NLU *FraCas* (Cooper et. al. 1996) *RTE* (Glickman 2006, *i.a.*)

Train a model for NLU

Evaluate a model for NLU *FraCas* (Cooper et. al. 1996) *RTE* (Glickman 2006, *i.a.*)

Train a model for NLU SNLI (Bowman et. al. 2015) Multi-NLI (Williams et. al. 2018)

Prior Non-archival Work

Sitzmann, Marek, Keselman (Stanford Course Project 2016)

Concurrent Work

Masatoshi Tsuchiya (LREC2018)

Gururangan, Swayamdipta, Levy, Schwartz, Bowman, and Smith (NAACL 2018)

Concurrent Work

"Hypothesis sentences of the SNLI corpus are composed by human workers, but all sentences of the SICK corpus are derived from original sentences using hand-crafted rules. We think that **this difference may be a cause of the hidden bias revealed by this paper**"

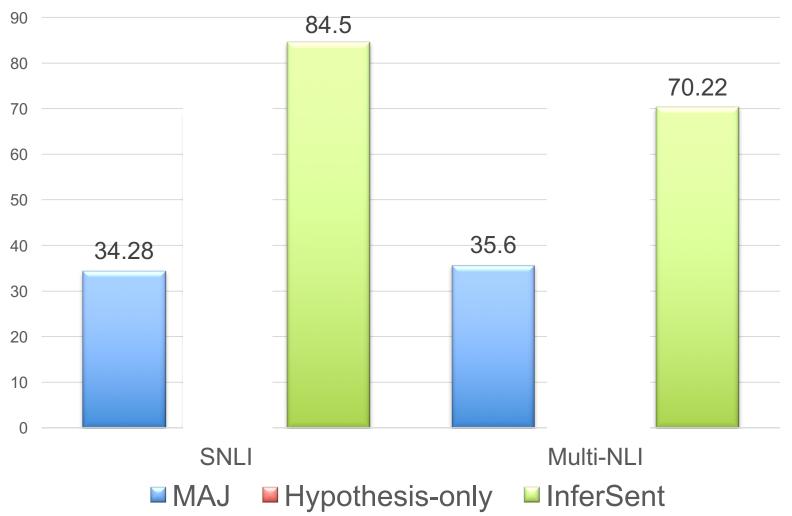
Tsuchiya (LREC2018)

Concurrent Work

"We show that, in a significant portion of such data, **this protocol leaves clues that make it possible to identify the label by looking only at the hypothesis**, without observing the premise"

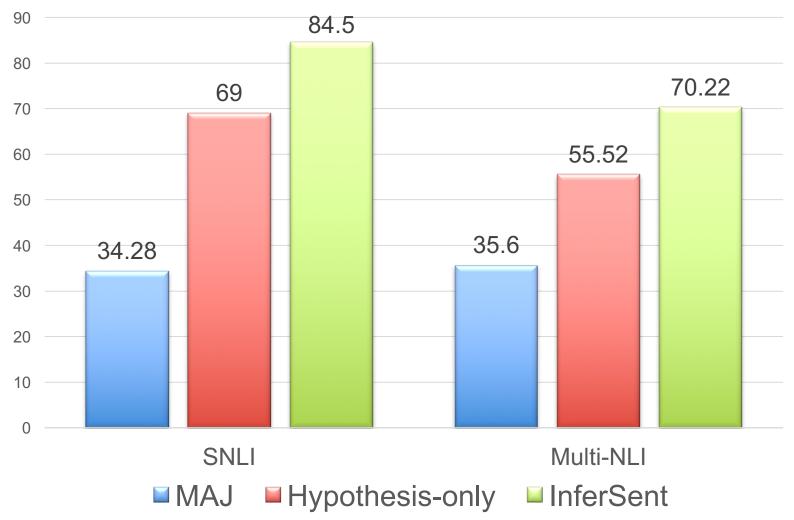
Gururangan et. al. (NAACL 2018)

Summary


Human elicitation has biases but might not be statistical irregularities

Recasting methods may create statistical irregularities

Compare NLI models with corresponding hypothesis only version



InferSent

InferSent

Thank you

Rachel Rudinger Aparajita Haldar

Jason Naradowsky

Benjamin Van Durme

