
Adversarial Learning for Robust Emergency Need Discovery in Low Resource Settings

Developing technologies to discover emergency needs in low resource settings is vital for effectively providing aid
during disastrous events. In emergency scenarios with limited time and resources, humans may not be able to
quickly scan incoming texts and SOSs. NLP models might help with identifying, classifying, and prioritizing
distress signals. In low resource and time-sensitive settings, supervised data for training such models is sparse and
human annotators might be hard to find. Furthermore, distributions of needs might not be consistent across differ-
ent emergency scenarios, and populations in varying emergency scenarios may use distinct vocabulary or phrases
to express the same need. In turn, applying models across multiple emergency scenarios might be disadvantageous.

Inspired by prior work that uses adversarial learning to overcome domain- and dataset-specific biases, artifacts
or distributions [Ganin et al., 2016, Belinkov et al., 2019], we apply adversarial learning to the task of discovering
emergency needs in low resource settings. When training a classifier to predict whether and which type of emer-
gency need is expressed in a text, we force our model to predict which disaster occurred. Adversarial learning,
implemented through a gradient reversal, penalizes our model when correctly predicting the disaster that occurred.
We hypothesize that this may force our networks to generalize well across different disaster scenarios.
Baseline: For each emergency need n ∈ N , a pre-defined set of possible needs, we train a binary classifier to
predict whether n is expressed in sentence s. Each binary classifier consists of a Bi-LSTM encoder g(s) that maps
each sentence s to a vector representation vs, and a MLP fn(vs) that predicts whether n is expressed in s. To deal
with large class imbalances due to that fact that most texts do not express an emergency need, we weight our loss
function, specifically cross-entropy, based on the class imbalance of the training set. Our loss function for each
binary classifier is Ln = L(fn(vs), y), where y is a boolean indicating whether emergency need n is expressed in s.
Applying Adversarial Learning: Since each emergency situation may have different distributions of emergency
needs and the needs may be expressed differently in different situations, applying these binary classifiers across
events may not work well. During adversarial training, we additionally feed vs to a new MLP fsituation that
predicts which disastrous event e occurred. We modify the loss function of our network to become L = Ln +
λLAdv, where LAdv = L(fsituation(λencGRL(g(s))), e). λ and λenc respectively control the weight of the adversarial
loss function and the gradient reversal to g(s).
Experiments and Data: We use tweets associated with 8 emergency situations in the past ten years, that were
internally annotated with the 11 emergency needs described in the LORELEI Situation Frame task [Christianson
et al., 2018] using the EASL framework [Sakaguchi and Van Durme, 2018]. To test our hypothesis, we use a leave-
one-out setup where we train our baseline & adversarially-trained binary classifiers on all but one disaster event
and test on the held-out event. We repeat this process for all 8 events collected. Table 1 reports the difference in
F1 measure between the best performing adversarial model and the baseline model for each emergency need and
disaster event. In 42 of the 88 settings, we see no difference (in F1 score) between the best performing adversarial
model vs the baseline. In one case, the best performing adversarial model does slightly worse than the baseline,
and in the remaining 43 examples, the best adversarial model outperforms the baseline in F1. Inspecting our
results, the binary classifiers that predict whether a tweet mentions a “search” or “med” need achieve the same
F1 score as the baseline in all but one case. While each emergency need is often expressed in less than 50% of the
tweets, it should be noted that these two needs each appear in less than 10% of the training examples. For the
“regimechange” need during the 2015 Paris Attack, we notice a 10+ absolute F1 improvement. Upon inspection,
the model correctly predicted that a significantly smaller number of tweets represented a “regimechange” need
compared to the baseline model’s predictions. In extensions to this work, we will evaluate on a held-out test of
new disaster events, and explore other training techniques and experimental setups.

violence med search food utils infra water shelter regimechange evac terrorism

2011 NabroEruption 0.12 0.00 0.00 0.00 0.28 0.00 0.13 0.00 0.00 0.14 0.44
2011 EastAfricaDroughts 1.14 0.00 0.00 0.01 0.94 0.03 0.06 0.03 0.00 0.00 0.00
2013 Iran Earthquake 0.00 0.02 0.00 2.37 0.00 0.72 0.00 0.63 4.34 0.00 0.20
2013 India Cyclone 1.50 0.00 0.00 0.00 0.10 0.00 0.00 0.60 0.00 0.42 0.00
2013 EgyptCoupD’état 0.01 0.00 0.00 0.00 0.68 0.72 1.88 0.00 0.10 -0.06 0.00
2014 Turkey Flash Floods 0.00 0.00 0.00 0.00 0.27 0.02 1.68 0.18 0.00 3.54 0.00
2015 Paris Attacks 0.01 0.00 0.00 0.34 0.63 1.00 0.00 0.00 10.02 0.58 0.24
2016 OromoProtest 0.00 0.00 0.00 0.00 0.34 0.00 0.19 0.00 2.66 0.08 0.08

Table 1: Each row indicates the held-out event and each column represents the emergency need predicted. Numbers represent
the difference in F1 between the best performing model for each setting and the corresponding baseline binary classifier.



violence med search food utils infra water shelter regimechange evac terrorism

2016 OromoProtest 0.00 0.00 0.00 0.00 5.61 0.00 0.45 0.65 2.54 0.04 0.00
2011 NabroEruption 1.06 0.00 0.00 0.00 3.87 0.00 0.97 0.00 0.00 0.39 1.79
2013 Iran Earthquake 0.00 0.04 0.00 0.08 0.04 0.04 0.00 0.96 9.25 1.08 1.95
2013 India Cyclone 3.16 0.00 0.00 0.00 0.77 0.00 0.00 3.41 0.00 3.20 0.00

accuracy 2015 Paris Attacks 0.04 0.00 0.00 0.61 0.08 1.63 0.00 0.00 6.33 0.08 8.64
2014 Turkey Flash Floods 0.22 0.00 0.00 0.00 0.89 0.06 0.39 8.42 0.00 0.00 0.00
2011 EastAfricaDroughts 2.53 0.00 0.00 0.09 1.29 0.04 0.04 1.11 0.00 0.04 0.00
2013 EgyptCoupD’état 0.12 0.00 0.00 0.00 0.00 0.12 0.08 0.00 0.08 -0.04 0.49

2016 OromoProtest 0.00 0.00 0.00 0.00 4.47 0.00 2.25 2.89 14.01 0.11 0.05
2011 NabroEruption 0.10 0.00 0.00 0.00 4.77 0.00 0.11 0.00 0.00 0.43 0.35
2013 Iran Earthquake 0.00 0.02 0.00 5.88 8.33 0.28 0.00 0.63 15.40 0.31 0.20
2013 India Cyclone 5.22 0.00 0.00 0.00 0.11 0.00 0.00 0.62 0.00 0.60 0.00

precision 2015 Paris Attacks 0.01 0.00 0.00 4.18 0.85 0.96 0.00 0.00 19.31 0.93 1.00
2014 Turkey Flash Floods 0.39 0.00 0.00 0.00 0.19 0.40 6.94 1.68 0.00 0.00 0.00
2011 EastAfricaDroughts 1.78 0.00 0.00 1.39 1.08 0.11 0.15 0.88 0.00 0.00 0.00
2013 EgyptCoupD’état 0.01 0.00 0.00 0.00 0.41 0.97 2.02 0.00 4.09 -0.20 2.75

2016 OromoProtest 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.00 0.36
2011 NabroEruption 0.00 0.00 0.00 0.00 0.00 0.00 4.84 0.00 0.00 0.00 0.37
2013 Iran Earthquake 0.00 3.91 0.00 1.36 0.00 1.25 0.00 0.64 0.00 0.00 0.00
2013 India Cyclone 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

recall 2015 Paris Attacks 13.73 0.00 0.00 0.35 0.50 1.55 0.00 0.00 0.00 0.43 -0.32
2014 Turkey Flash Floods 0.00 0.00 0.00 0.00 0.85 0.00 0.90 0.00 0.00 2.20 0.00
2011 EastAfricaDroughts 22.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2013 EgyptCoupD’état 0.00 0.00 0.00 0.00 0.84 0.57 1.04 0.00 0.00 0.00 0.00

Table 2: Each row indicates the held-out event and each column represents the emergency need predicted. Numbers represent
the difference in accuracy between the best performing model for each setting and the corresponding baseline binary classifier.
The first column indicates the difference in which metric is reported. Note that for a given disaster event and SF type, the
numbers do not correspond to the same model.
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