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Abstract

We present P̂ aRTE, a collection of 1,126
pairs of Recognizing Textual Entailment (RTE)
examples to evaluate whether models are robust
to paraphrasing. We posit that if RTE models
understand language, their predictions should
be consistent across inputs that share the same
meaning. We use the evaluation set to deter-
mine if RTE models’ predictions change when
examples are paraphrased. In our experiments,
contemporary models change their predictions
on 8-16% of paraphrased examples, indicating
that there is still room for improvement.

1 Introduction

Recognizing Textual Entailment (RTE), the task
of predicting whether one sentence (hypothesis)
would likely be implied by another (premise), is
central to natural language understanding (NLU;
Dagan et al., 2005), as this task captures “all man-
ners of linguistic phenomena and broad variability
of semantic expression” (MacCartney, 2009). If an
RTE model has a sufficiently high capacity for reli-
able, robust inference necessary for full NLU (Mac-
Cartney, 2009), then the model’s predictions should
be consistent across paraphrased examples.

We introduce P̂ aRTE, a test set to evaluate how
reliable and robust models are to paraphrases (Ta-
ble 1 includes an example). The test set consists of
examples from the Pascal RTE1-3 challenges (Da-
gan et al., 2006; Bar-Haim et al., 2006; Giampic-
colo et al., 2007) rewritten with a lexical rewriter
and manually verified to preserve the meaning and
label of the original RTE sentence-pair. We use this
evaluation set to determine whether models change
their predictions when examples are paraphrased.

While this may not be a sufficient test to deter-
mine whether RTE models fully understand lan-
guage, as there are many semantic phenomena that
RTE models should capture (Cooper et al., 1996;
Naik et al., 2018), it is necessary that any NLU
system be robust to paraphrases.

P The cost of security when world leaders gather near
Auchterarder for next year ’s G8 summit, is expected
to top $150 million.

P’ The cost of security when world leaders meet for
the G8 summit near Auchterarder next year will top
$150 million.

H More than $150 million will be probably spent for
security at next year’s G8 summit.

H’ At the G8 summit next year more than $150 million
will likely be spent on security at the event.

Table 1: An original and paraphrased RTE example.
The top represents an original premise (P) and its para-
phrase (P’). The bottom depicts an original hypothesis
(H) and its paraphrase (H’). A model robust to para-
phrases should have consistent predictions across the
following pairs: P-H, P’-H, P-H’, and P’-H’.

Our experiments indicate that contemporary
models are robust to paraphrases as their predic-
tions do not change on the overwhelmingly large
majority of examples that are paraphrased. How-
ever, our analyses temper this claim as models are
more likely to change their predictions when both
the premise and hypothesis are phrased compared
to when just one of the sentences is rewritten. We
release P̂ aRTE1 to encourage others to evaluate
how well their models perform when RTE exam-
ples are paraphrased.

2 Related Work

With the vast adoption of human language tech-
nology (HLT), systems must understand when
different expressions convey the same meaning
(paraphrase) and support the same inferences
(entailment). Paraphrasing and entailment are
closely connected as the former is a special case
of the latter where two sentences entail each
other (Nevěřilová, 2014; Fonseca and Aluísio,
2015; Víta, 2015; Ravichander et al., 2022). Para-

1https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/HLMI23
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phrasing has been used to improve RTE predic-
tions (Bosma and Callison-Burch, 2006; Sun et al.,
2021) and RTE has been used for paraphrase iden-
tification (Seethamol and Manju, 2017) and gen-
eration (Arora et al., 2022). Furthermore, both
phenomena are key to NLU (Androutsopoulos and
Malakasiotis, 2010) and work such as Zhao et al.
(2018); Hu et al. (2019) have explored rewriting
RTE examples to create more robust models.

We follow a long tradition of evaluating linguis-
tic phenomena captured in RTE models (Cooper
et al., 1996). Recent tests focus on evaluat-
ing how well contemporary RTE models capture
phenomena such as monotonicity (Yanaka et al.,
2019a,b), verb veridicality (Ross and Pavlick, 2019;
Yanaka et al., 2021), presuppositions (Parrish et al.,
2021) implicatures (Jeretic et al., 2020), basic
logic (Richardson et al., 2020; Shi et al., 2021),
figurative language (Chakrabarty et al., 2021), and
others (Naik et al., 2018; Poliak et al., 2018a;
Vashishtha et al., 2020). Unlike many of those
works that evaluate models’ accuracy on examples
that target specific phenomena, we use a contrastive
approach (Prabhakaran et al., 2019; Gardner et al.,
2020) to determine whether RTE models’ predic-
tions change when examples are paraphrased.

3 P̂ aRTE

To explore whether these RTE models are robust
to paraphrases, we create P̂ aRTE, a modified ver-
sion of the Pascal RTE1-3 challenges (Dagan et al.,
2005; Bar-Haim et al., 2006; Giampiccolo et al.,
2007). P̂ aRTE contains 1,126 examples of an
original unmodified RTE sentence-pair grouped
with a sentence-pair with a modified premise, hy-
pothesis, or both. We use the examples in RTE1-3
to create our test set, as opposed to other RTE
datasets due to its long-standing history.

3.1 Paraphrase Generation & Verification

For each RTE premise-hypothesis pair (P-H), we
created three paraphrased premises (P’) and hy-
potheses (H’) using a T5-based paraphraser2 fine-
tuned on the Google PAWS dataset (Zhang et al.,
2019). To ensure lexically diverse paraphrases,
we filter out any paraphrases that have high lexi-
cal overlap with the original sentences using Jac-
card index threshold of 0.75. Out of 14,400 gener-
ated sentences, 2,449 remained - 956 paraphrased

2We manually verified the quality of this paraphraser. See
Appendix B for more details.

premises (P’) and 1,493 paraphrased hypotheses
(H’). Next, we retained 550 paraphrased premises
and 800 paraphrased hypotheses paraphrases that
crowdsource workers identified as grammatical and
similar in meaning to the original sentences.3 We
include a grammatical check since an existing RTE
evaluation set focused on paraphrases (White et al.,
2017) contains hypothesis-only biases related to
grammaticality (Poliak et al., 2018b).

If at least one P’ or one H’ passes this filtering
process, we retain the original RTE example and
pair it with a corresponding paraphrased example
(i.e. P’-H’, P’-H, or P-H’). In the case where more
than one P’ or H’ passes the filtering, we retained
the P’ or H’ that crowdsource workers deemed most
similar to the original sentence. Out of the original
2,400 RTE test pairs, we retain 914 pairs with a
high-quality P’ or H’, resulting in 1,178 original
and paraphrased RTE pairs.4

3.2 Overcoming Semantic Variability

MacCartney (2009) argues that in addition to being
reliable and robust, RTE models must deal with
the broad variability of semantic expression. In
other words, though two sentences may be semanti-
cally congruent, it is possible that small variations
in a paraphrased sentence contain enough seman-
tic variability to change what would likely, or not
likely be inferred from the sentence. Despite all P’
and H’ being deemed to be semantically congru-
ent with their corresponding original sentences, the
semantic variability of paraphrases might change
whether H or H’ can be inferred from P’ or P.

Therefore, propagating an RTE label from an
original sentence pair to a modified sentence pair
might be inappropriate. We manually determined
that this issue occurs in just 52 (4%) examples, and
retained 1,126 examples. This ensures an evalua-
tion set of high-quality examples that can be used
to determine whether models are sensitive to para-
phrases and change their prediction on paraphrased
examples. Our dataset contains 402 examples with
just a paraphrased premise P’, 602 with just a para-
phrased hypothesis H’, and 122 with both a para-
phrased premise and hypothesis.

3See Appendix B for a detailed description of this filtering
process, including annotation guidelines.

4415 pairs where the premise is paraphrased, 631 pairs
where the hypothesis is paraphrased, and 132 pairs where both
are paraphrased.



Model
Testset

MNLI RTE P̂ aRTE % ∆ P̂ aRTE

BoW 67.97 53.99 54.70 15.27
BiLSTM 66.68 51.59 51.24 16.69
BERT 90.04 72.11 72.55 9.50
RoBERTa 92.68 83.83 82.59 7.99
GPT-3 - 80.90 79.12 10.12

Table 2: Each row represents a model. The columns MNLI, RTE, P̂ aRTE report the model’s accuracy on those test
sets. The last column (% ∆ P̂ aRTE) reports the percentage of examples where the model changed its prediction.

4 Experimental Setup

We explore models built upon three different
classes of sentence encoders: bag of words (BoW),
LSTMs, and Transformers. Our BoW model rep-
resents premises and hypotheses as an average
of their tokens’ 300 dimensional GloVe embed-
dings (Pennington et al., 2014b). The concatena-
tion of these representations is fed to an MLP with
two hidden layers. For the BiLSTM model, we
represent tokens with GloVe embeddings, extract
sentence representations using max-pooling, and
pass concatenated sentence representations to an
MLP with two hidden layers.

Our transformer-based models are pre-trained
BERT (Devlin et al., 2019) and Roberta (Liu et al.,
2020) encoders with an MLP attached to the final
layer. Additionally, we use GPT-3 in a zero-shot
setting where we ask it to label the relationship
between a premise and hypothesis.5

The RTE training sets do not contain enough ex-
amples to train deep learning models with a large
number of parameters. We follow the common
practice of training models on MNLI and using our
test set to evaluate how well they capture a specific
phenomenon related to NLU. During testing, we
map the MNLI ‘contradiction’ and ‘neutral’ labels
to the ‘not-entailed’ label in RTE, following com-
mon practice (Wang et al., 2018; Yin et al., 2019;
Ma et al., 2021; Utama et al., 2022, inter ailia).

5 Results

Table 2 report the results. The RTE and P̂ aRTE
columns respectively report the models’ accuracy
on the 1,126 unmodified and paraphrased sentence
pairs.6 Comparing the difference in accuracy be-

5See Appendix A for more details, including hyper-
parameters, model sizes, and GPT-3 prompt design and con-
figurations. Our code is available at https://github.com/
stonybrooknlp/parte

6Although there are just 914 unmodified sentence pairs, for
the sake of a head-to-head comparison, we retain all instances
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Figure 1: Number of times a model changes its predic-
tions from correct to incorrect (left blue bar) or incorrect
to correct (right red bar).

tween unmodified and paraphrased examples can
be misleading. If the number of times a model
changes a correct prediction is close to the number
of times it changes an incorrect prediction, then
the accuracy will hardly change. Figure 1 demon-
strates why the accuracies do not change by much
when models’ predictions change on paraphrased
examples. Furthermore, if a model is robust to
paraphrases, then it should not change its predic-
tions when an example is paraphrased, even if the
prediction on the original unmodified example was
incorrect. Hence, our test statistic is the percentage
of examples where a model’s predictions change
(% ∆ P̂ aRTE column in Table 2) rather than a
change in accuracy.

Compared to the Transformer based models, the
BoW and BiLSTM models seem to be more sensi-
tive, and less robust to paraphrasing, as they change
their predictions on 15.27% and 16.69% respec-
tively of the 1,126 examples. However, this might
be associated with how word xembedding models
only just outperform random guesses in and per-
form much worse on RTE compared to the Trans-
former models.

of the unmodified sentence pairs when computing accuracy.

https://github.com/stonybrooknlp/parte
https://github.com/stonybrooknlp/parte
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Figure 2: Percentage of examples with one paraphrased
sentence (left blue bar) or two paraphrased sentences
(right red bar) where models’ predictions change.

Focusing on the Transformer models, we noticed
that RoBERTa performs the best on the datasets and
is the most robust to paraphrasing - changing its
predictions on just under 8% of paraphrased exam-
ples. Interestingly, when the models are trained
specifically to perform this task, the models change
their predictions on fewer paraphrased examples
as these models’ accuracy increases. However, im-
proving performance alone might not automatically
improve models’ robustness to paraphrases. GPT-
3’s accuracy noticeably outperforms BERT’s accu-
racy, but GPT-3 changes its predictions on more
paraphrased examples compared to BERT.

P’-H’ compared to P-H’ or P’-H Figure 2
shows noticeable increases in the percentage of
changed predictions when both premise and hy-
pothesis are paraphrased compared to when just
one of the sentences is paraphrased. Specifically,
for BoW and BiLSTM we see an increase of 4.01
and 6.01 percentage points respectively, and for
BERT, Roberta, GPT-3 increases of 4.97, 4.83, and
3.55. As the transformer-based models changed
their predictions on 12-14% of examples where
both sentences are paraphrased compared to 9-11%
in general, this analysis further suggests that these
models are not as robust to paraprhases as desired.

Entailed vs Not-entailed examples RTE anal-
yses often differentiate how models perform on
entailed vs not entailed examples (Liu et al., 2022).
In Figure 3, we do not see meaningful differences
in how models’ predictions change on paraphrased
examples based on the gold label. This might sug-
gest that our dataset does not contain statistical
irregularities based on the RTE labels.
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Figure 3: Percentage of examples where the models’
predictions changed when the gold label is entailed (blue
left bar) or not-entailed (right red bar).
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Figure 4: Percentage of examples where models’ predic-
tions change when the original prediction was correct
(left blue bar) or incorrect (right red bar).

Correct vs Not-Correct Predictions Figure 4
shows that the Transformer models’ predictions is
more likely to change when it’s prediction on an
original example was incorrect (right red bars) com-
pared to when the prediction for an original exam-
ple was correct (left blue bars). For example, when
RoBERTa’s prediction for an original RTE exam-
ple was correct, the model changed its prediction
on just 5.5% of the corresponding paraphrased ex-
amples. When RoBERTa’s predictions for an origi-
nal RTE example were incorrect, RoBERTa’s pre-
dictions changed for 20.88% corresponding para-
phrased examples. Analyzing differences in mod-
els’ confidences assigned to predictions might pro-
vide more insight (Marcé and Poliak, 2022). We
leave this for future work.

Source Task RTE1-3 examples originated from
multiple domains and downstream tasks, e.g.
question-answering (Moldovan et al., 2006), infor-
mation extraction (Grishman and Sundheim, 1996),
and summarization (Evans et al., 2004; Radev et al.,
2001). This enables researchers to evaluate how
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Figure 5: Percentage of examples where models predic-
tions change their predictions depending on the exam-
ples’ sources. We omit Bow and BiLSTM for space.

RTE models perform on examples that contain dif-
ferent aspects of open domain inference necessary
for the task (MacCartney, 2009). Figure 5 reports
the changes in models’ predictions across the differ-
ent sources of examples. We do not see consistent
trends across the original data sources.

6 Conclusion

We introduced P̂ aRTE, a high-quality evaluation
set of RTE examples paired with paraphrased RTE
examples. We use our evaluation set to determine
whether RTE models are robust to paraphrased ex-
amples. Our experiments indicate that while these
models predictions are usually consistent when
RTE examples are paraphrased, there is still room
for improvement as models remain sensitive to
changes in input (Jia and Liang, 2017; Belinkov
and Bisk, 2018; Iyyer et al., 2018). We hope that
researchers will use P̂ aRTE to evaluate how well
their NLU systems perform on paraphrased data.

Limitations

Our results nor evaluation set cannot be used to
indicate whether RTE models trained for other lan-
guages are robust to paraphrases. However, re-
searchers can apply the methods we used to de-
velop P̂ aRTE to build evaluation sets in other lan-
guages to test whether non-English NLU systems
are robust to paraphrases.

Ethics Statement

In conducting our research on RTE model robust-
ness to paraphrasing, we take great care to ensure
the ethical and responsible use of any data and
models involved. We adhere to the principles of
fairness, transparency, and non-discrimination in

our experimentation and analysis. Furthermore, we
take measures to protect the privacy and confiden-
tiality of any individuals crowdsource workers. We
also strive to make our evaluation set and methods
openly available to the research community to pro-
mote further study and advancement in the field of
Natural Language Processing.
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A Experimental Implementation Details

This section describes the model implementations
for our experiments. For our work we trained/fine-
tuned three different models - Bag of Words (BoW),
BiLSTM, BERT-large with a classification head
and RoBERTa-large with a classification head.
Each model was trained on the MultiNLI train-
ing dataset (Williams et al., 2018) and validated
on the paraphrased RTE dev set we created. Each
model was implemented using PyTorch. All trans-
former based models were downloaded from Hug-
gingFace.

A.1 BoW

The BoW model consisted of GloVe (300 dimen-
sion embeddings trained on 840B CommonCrawl
tokens) (Pennington et al., 2014b) vectors as the
embedding layer. The average of all word vectors
for the input sequence is treated as its final represen-
tation. The representations for the hypothesis and
premises were concatenated and passed through
three fully connected layers with ReLU activation
units after each layer. We concatenate the premise,
hypothesis, their absolute difference and their prod-
uct and pass it into the first layer of the classifier.
This input to the first layer is of 4 * embedding di-
mension and the output is of embedding dimension.
Each subsequent hidden layer’s input and output
dimensions are embedding dimension * embedding
dimension.

The model was trained with a vocabulary size
of 50,000, a learning rate of 0.005, the maximum
sequence length was 50 and a batch size of 32. We
force all sentences to be of maximum sequence
length using truncation or padding where applica-
ble. We train the model for 15 epochs and select
the one that achieves highest validation accuracy
for our experiments.

A.2 BiLSTM

The BiLSTM model consisted of GloVe (300 di-
mension embeddings trained on 840B Common-
Crawl tokens) (Pennington et al., 2014a) vectors
as the embedding layer. The average of all word
vectors for the input sequence is treated as its fi-
nal representation. The word vectors were passed
through an LSTM unit. This unit was bidirectional,
with 64 hidden units and 2 stacked LSTM layers.
The representations for the hypothesis and premises
were concatenated and passed through three fully
connected layers with ReLU activation units after

each layer. We concatenate the premise, hypothesis,
their absolute difference and their product and pass
it into the first layer of the classifier. This input to
the first layer is of hidden units * embedding di-
mension and the output is of embedding dimension.
Each subsequent hidden layer’s input and output
dimensions are embedding dimension * embedding
dimension.

The model was trained with a vocabulary size
of 50,000, a learning rate of 0.005, the maximum
sequence length was 50 and a batch size of 32. We
force all sentences to be of maximum sequence
length using truncation or padding where applica-
ble. We train the model for 15 epochs and select
the one that achieves highest validation accuracy
for our experiments.

A.3 BERT

We fine tuned the BERT-large model available on
HuggingFace 7. We added a classification head on
top of the model using the AutoModel API on Hug-
gingFace. The model was trained for 5 epochs with
a learning rate of 3e-6 using the Adam optimizer.
In order to simulate larger batch sizes on smaller
GPUs, we used gradient accumulation as well. We
simulated a batch-size of 32 by accumulating gradi-
ents over two batches of size 16. The model which
achieved the highest validation accuracy was used
for our experiments.

A.4 RoBERTa

We fine tuned the RoBERTa-large model available
on HuggingFace 8. We added a classification head
on top of the model using the AutoModel API on
HuggingFace. The model was trained for 5 epochs
with a learning rate of 3e-6 using the Adam opti-
mizer. In order to simulate larger batch sizes on
smaller GPUs, we used gradient accumulation as
well. We simulated a batch-size of 32 by accumu-
lating gradients over 8 batches of size 4. The model
which achieved the highest validation accuracy was
used for our experiments.

A.5 GPT-3

We used a temperature of 0.0 for all the experiments
to select the most likely token at each step, as this
setting allow for reproducibility.
response = openai.Completion.create(

model="text-davinci-003",
prompt=prompt,

7https://huggingface.co/bert-large-uncased
8https://huggingface.co/roberta-large
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temperature=0,
max_tokens=1,
top_p=1.0,
frequency_penalty=0.1,
presence_penalty=0.0

)

We restricted the model outputs to just one token.
Only “yes" or “no" are considered valid answers.
The model did not generate any output apart from
these in all our experiments. We used the following
prompt template:
Premise: {sentence1}
Hypothesis: {sentence2}

Does the premise entail the hypothesis?
Answer:

B Dataset Creation

The following process describes how we create a
vetted, paraphrased version of the RTE dataset that
tests whether models’ are robust to paraphrased in-
put. First, we use a strong T5-based paraphraser to
create three re-written sentences for each premise
and hypothesis in the 2,400 pairs in the RTE1-3 test
sets, resulting in 14,400 new sentences. To generate
these paraphrases, we use top-k sampling during
decoding.9 The re-writer model was fine-tuned
on the Google PAWS dataset and can be found on
Huggingface 10. To evaluate its ability to generate
gramatically correct paraphrases, we sampled 100
sentence pairs with at least one valid paraphrase
and manually went through them. Upon checking
for grammaticality, we found a grammatical error
in <8% of the sentences.

Since we want to test paraphrastic understanding
beyond simple lexical replacement, we discarded
the re-written sentences that had at most a 25%
lexical overlap with the corresponding original sen-
tence. We use Jaccard index as a measure of lexical
similarity (1) where τs are the tokens in the original
sentence and τp are the the tokens in the paraphrase.

Score =
τs ∩ τp
τs ∪ τp

(1)

To ensure that the re-written sentences are indeed
sentence-level paraphrases for the original sen-
tences, we relied on crowdsource workers to re-
move low quality paraphrases. The Amazon Me-
chanical Turk HIT is described in detail in sub-
section B.2. We retain any paraphrases that get a
similarity score above 75 out of 100.

9k=120; top-p=0.95
10https://huggingface.co/Vamsi/T5_Paraphrase_

Paws

B.1 Manual Verification
Before crowd sourcing to get the best paraphrase
generated for a given sentence, we conducted man-
ual evaluation to understand the average error rate
of the paraphraser model used. As mentioned
above, we sampled 100 sentence pairs with each
pair having atleast one valid paraphrase. The para-
phrases for these sentences were evaluated for
grammatical errors. Any semantic errors are han-
dled during crowd-sourcing.

The errors can roughly be classified into roughly
three categories - repetition errors, tense errors and
incorrect punctuation. Examples of each type can
be found in Figure 6. Overall, we found the error
rate to be small enough to continue using the para-
phraser. We also asked MTurk workers to mark
paraphrases as grammatically incorrect to ensure
that the final dataset does not have any grammati-
cally incorrect sentences.

B.2 MTurk HIT
We used Amazon Mechanical Turk to identify un-
grammatical paraphrases rate how well a generated
paraphrase preserved the meaning of the original
sentence. No filtering criteria was applied to crowd-
source workers and were paid roughly $14.20 an
hour.

Each annotator was presented with a reference
sentence, a corresponding paraphrased sentences,
and tasked to judge on a scale of 0 to 100 how
closely a paraphrased sentence retains the mean-
ing of the reference sentence. A similarity score
of 100 means that the paraphrase is the exactly the
same in meaning as the reference, while a similarity
score of 0 means that the meaning of the paraphrase
is irrelevant or contradicts the reference sentence.
Additionally, the MTurk workers were asked to
judge the grammaticality of the paraphrase by se-
lecting whether the paraphrase was grammatically
correct or now. Figure 7 includes the instructions
we showed crowdsource workers for judging simi-
larity between sentences.

https://huggingface.co/Vamsi/T5_Paraphrase_Paws
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Figure 6: Types of errors made by the paraphraser model

Figure 7: Instructions for semantic similarity and grammatically check.


