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Abstract

The semantic function tags of Bonial, Stowe, and Palmer
(2013) and the ordinal, multi-property annotations of
Reisinger et al. (2015) draw inspiration from Dowty’s seman-
tic proto-role theory. We approach proto-role labeling as a
multi-label classification problem and establish strong results
for the task by adapting a successful model of traditional se-
mantic role labeling. We achieve a proto-role micro-averaged
F1 of 81.7 using gold syntax and explore joint and condi-
tional models of proto-roles and categorical roles. In compar-
ing the effect of Bonial, Stowe, and Palmer’s tags to Prop-
Bank ArgN-style role labels, we are surprised that neither an-
notations greatly improve proto-role prediction; however, we
observe that ArgN models benefit much from observed syntax
and from observed or modeled proto-roles while our models
of the semantic function tags do not.

1 Introduction

Dowty (1991) argued against the categorical notion of se-
mantic (thematic) roles, suggesting instead a multi-faceted
relationship between an argument and a predicate which he
termed proto-roles. Traditional categories such as AGENT
or PATIENT were replaced with prototypical assumptions
of underlying semantic properties; e.g. a PROTO-AGENT is
likely to be aware and volitional. This led Reisinger et al.
(2015) to construct a dataset supporting the task of semantic
proto-role labeling (SPRL): predicting human responses to
questions on individual properties. For example, after read-
ing the examples below, consider properties of what was led:
Was the argument aware of being led? Was it sentient? Was
it willing? Did it instigate the leading?

a) The officer led the convict to the car.
b) California led the nation in sales.
c) The guide led John past the danger.
The SPRL task pursued in this paper is a departure from

PropBank (Palmer, Gildea, and Kingsbury 2005) semantic
role labeling (SRL) which would annotate all of the above
examples with the same verb sense (LEAD.01) and argument
role (ARG1). The SPRL questions, however, distinguish be-
tween these examples without assigning a categorical label.
We expect this contrast to provide an opportunity for syner-
gistic joint modeling of SPRL and SRL.

Copyright c© 2017, Association for the Advancement of Artificial
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California led the nation in sales.

LEAD.01:ARG1-PPT

AWARENESS -
EXISTED AFTER +
... ...
VOLITION -

Figure 1: SPRL (top) vs SRL (bottom).

In what follows we:
• specify a multi-label classification evaluation for SPRL

appropriate for joint labeling of entire input sentences;
• establish a strong SPRL result backed by an SRL model

with reasonable performance on a standard dataset;
• evaluate a variety of models with SPRL and SRL;
• report SRL results on the new PropBank semantic function

tags for Ontonotes 5, contrasting the tagset to PropBank
ArgN labels via their impact on our models.

2 Tasks

Figure 1 demonstrates the varieties of semantic labeling that
we explore in this paper. SRL is traditionally a multi-class
classification problem where predicate-argument pairs are
assigned a label describing the role of the argument in the
event. We investigate two label sets for SRL: ArgN labels
(e.g. Arg0, Arg1) associate the argument to numbered slots
for the particular predicate (the numbers tend to hold similar
meaning across predicates, but this is not guaranteed); the
semantic function tags (SFT) of Bonial, Stowe, and Palmer
(e.g. PPT, GOL) associate the argument with a coarse-grained
role that has meaning across all predicates.

We also investigate proto-role models. We cast SPRL as
a multi-label classification task where each pair is assigned
a set of properties (e.g. {awareness, volition}). In the data
collected by Reisinger et al., each predicate-argument pair
is labeled with two judgments for each SPRL property:

1. Boolean applicability: is the question asked by the prop-
erty applicable to the given pair?

2. A five-way likert response: how likely is it that the prop-
erty holds in the given context?
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(a) SRL+SPRL� with sense variables
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California led the nation in sales .
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(b) SRL|SPRL�: uses pairwise features of observed properties

Figure 2: Factor graphs depicting two models instantiated on the sentence from Fig. 4. S2 is a sense variable to identify a
PropBank frame for the predicate led. R21 is the SRL variable for the role of California with respect to the predicate. P aw

21 ,P ins
21

and P vol
21 are binary variables representing whether or not California has respectively awareness, instigation, and volition in the

led event (P q
ij � Pijq). R24 is the role variable for nation in the led event.

To formulate the prediction problem as multi-label bi-
nary classification, we let the gold label for each predicate-
argument pair be the set of properties annotated as “applica-
ble” with likert response of 4 or 5.

3 Models and Features for SPRL and SRL
To establish strong results for SPRL, we take inspiration from
the related SRL models of Gormley et al. (2014). We explore
several models for three tasks: SRL alone, SPRL alone, and
joint prediction of SRL and SPRL. We also optionally include
predicate-sense prediction.

Formulation Each model is formalized as a conditional
random field or CRF (Lafferty 2001). For each given pred-
arg pair (i, j) and property q, we instantiate three types of
variables: Pijq is a binary variable with labels {+,−} rep-
resenting that q does or does not hold respectively. Rij is a
multi-class variable ranging over SRL role labels. When only
the predicate index i is given, we instantiate Rij for all j and
allow the role label NIL to indicate that there is no seman-
tic pred-arg relationship. Si is a multi-class variable ranging
over the possible predicate senses. For each model, we select
from these variables a task-specific subset:

Y = {Yk} ⊆ {Pijq} ∪ {Rij} ∪ {Si}.
Given the input sentence x, the probability of a joint assign-
ment y = {yk} to the variables Y is given by a globally
normalized distribution:

p(y|x,w) ∝
∏

a∈A

exp
(
wTfa(ya,x)

)
,

where each a ∈ A is an index set of variables that some fea-
ture looks at jointly, ya is the corresponding subset of y, and
w is a vector of parameters. In a factor-graph representation
(Frey et al. 1997), A corresponds to the set of factors and
defines the independence assumptions.

Models We define five models that vary in two key as-
pects: the types of variables we include and the structure of
the graphical model, given by A.
• SRL includes role variables {Rij} with an indepen-

dent multi-class logistic regression for each—a graphical
model with only unary factors.

• SPRL includes property variables {Pijq} with an indepen-
dent binary classifier for each conjunction of predicate-
argument pair (i, j) and property q.

• SPRL� has the same variables as SPRL but allows for in-
teractions between pairs of properties. For each pair of
properties q and r, there is a factor between Pijq and Pijr.

• SRL+SPRL combines models SRL and SPRL by adding a
factor between each SPRL property variable Pijq and its
corresponding SRL role variable Rij .

• SRL+SPRL� is our full joint model and includes all factors
from models SPRL� and SRL+SPRL. See Figure 2.
The conditional models SRL|SPRL (SRL given SPRL) and

SPRL|SRL are identical to SRL+SPRL, except that the gold
value of each property variable Pijq or role variable Rij

is observed respectively—likewise for SPRL�|SRL versus
SRL+SPRL�. SRL|SPRL� is identical to SRL|SPRL with the
addition of indicator features for each Rij that look at ob-
served pairs of SPRL properties.

When evaluating on sense prediction, we also include
the sense variables {Si}, although they do not share fac-
tors with the other variables of the models. We use belief
propagation (Pearl 1988; Kschischang, Frey, and Loeliger
2001) for inference. For the models with cycles (SPRL�,
SRL+SPRL�), we run loopy belief propagation (Pearl 1988;
Murphy, Weiss, and Jordan 1999) with a maximum of five
iterations. Our implementation uses the Pacaya library1.

Features As is typical in CRFs, we define each of our
features on a factor a as a conjunction of an indicator 1 for a
fixed variable assignment ỹa with some observation-feature
function gak of the input sentence:

fa,k,ỹa
(ya,x) = 1(ya = ỹa)gak(x).

We include over one hundred observation-features moti-
vated by prior work in dependency-based SRL (Björkelund,
Hafdell, and Nugues 2009; Zhao et al. 2009; Lluı́s, Carreras,
and Màrquez 2013). The features use the sentence’s words,
lemmas, Brown clusters (Brown et al. 1992)2, part-of-speech
tags, and syntactic dependency parse. When present, inter-
property and SPRL-SRL factors only include a bias param-
eter for each configuration. We employ the feature-hashing
trick (Ganchev and Dredze 2008; Weinberger et al. 2009) to
restrict the number of model parameters.

1https://github.com/mgormley/pacaya
2We use https://github.com/percyliang/brown-cluster to create 1000 clusters

of wikitxt from the polyglot project (Al-Rfou, Perozzi, and Skiena
2013). Our features look at the full id and length-five prefixes.
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annotated pred-arg # label types

sentences instances ArgN SFT

CoNLL09 43,012 430,850 53 -
OntoFull 35,497 266,298 31 26
OntoMed 24,755 185,878 31 26
OntoSmall 4,912 36,618 27 24
PropSmall 4,912 9,738 20 16

Table 1: Dataset sizes

Prior work has explored joint syntactic and semantic de-
pendency parsers to understand the interaction between the
two linguistic strata (Johansson 2009; Gesmundo et al. 2009;
Naradowsky, Riedel, and Smith 2012; Lluı́s, Carreras, and
Màrquez 2013; Gormley et al. 2014). Here, by contrast, we
are interested in the relation between different semantic an-
notation schemes. Nonetheless, our joint model is similar in
both form and features.3

4 Experiments

Datasets Our experiments use several datasets. PropBank
adds semantic role labels to the syntactic annotations avail-
able on the Wall Street Journal (WSJ) portion of the Penn
Treebank (Marcus, Marcinkiewicz, and Santorini 1993).
Each predicate instance in the corpus is labeled with a verb
sense (a.k.a. roleset) which has a corresponding frame. See
Figure 3 for the frame corresponding to LEAD.01 from our
example. Each frame describes the slots that can be filled
by the predicate’s arguments. Arguments of each predicate
instance are identified as such and labeled so as to identify
which slot it fills. For example, California fills the ARG1
slot in Figure 1. PropSmall contains the subset of PropBank
predicate-argument pairs as filtered and further annotated by
Reisinger et al. (2015). This is our only dataset containing
SPRL annotations.

In PropBank, the role labels (e.g. Arg1, Arg2) are not
necessarily consistent in meaning across rolesets and must
be disambiguated by the frame. However, Ontonotes 5
(Weischedel et al. 2013; Bonial, Stowe, and Palmer 2013)
— a more recent extension of PropBank4 — additionally an-
notates each slot with one of a small number of labels called
propbank semantic function tags (SFT) whose meanings are
not roleset specific. These are shown after the hyphen in the
example of Figure 3. Having roleset-independent tags jus-
tifies sharing statistical strength of observations across all
training examples. The Ontonotes 5 dataset includes most
(but not all) of the Penn Treebank WSJ sentences as well
as data from other genres. Our experiments on Ontonotes

3The model of Naradowsky, Riedel, and Smith looks especially
similar to ours for SPRL (i.e. they include a collection of binary
variables for each pred-arg pair); however, theirs is a multi-class
model using hard factors to enforce mutual exclusion of the labels
and is more akin to our SRL model. Such constraints are inappro-
priate for multi-label SPRL.

4We used the release-candidate version of the frames:
https://github.com/propbank/propbank-frames/tree/release-candidate

Roleset: Lead.01
Name: directed motion, be ahead of

Arg0-PAG: leader
Arg1-PPT: in the lead of
Arg2-EXT: extent
Arg4-DIR: start point
Arg5-GOL: end point

Examples:
cause to go: John led the unhappy ...
go before: California led the nation ...
...

Figure 3: Example of information available in PropBank
framesets (v3.1) for Lead.01.

5 are restricted to the WSJ subset. OntoFull is composed
of all overt predicate-argument pairs in the WSJ portion
of Ontonotes 5. It includes SFT annotations in addition to
ArgN SRL labels. OntoMed and OntoSmall include the pairs
from random subsets of the sentences in OntoFull. Figure 1
compares the sizes of our datasets.

The PropBank, Ontonotes, and SPRL datasets were origi-
nally annotated relative to constituency parses. We automat-
ically map gold constituency parses to universal Stanford
dependencies (de Marneffe et al. 2014) and gold part-of-
speech tags to the universal part-of-speech tagset (Petrov,
Das, and McDonald 2012). 5

CoNLL09 is the English SRL data from the CoNLL-
2009 shared task (Hajič et al. 2009; Surdeanu et al. 2008)
and includes verbal and nominal predicates from PropBank
(Palmer, Gildea, and Kingsbury 2005) and NomBank (Mey-
ers et al. 2004) respectively. The English data from the
CoNLL-2009 shared task (Hajič et al. 2009; Surdeanu et al.
2008) included head-based semantic role labeling and sense
prediction. We use the CoNLL-2009 data to validate the per-
formance of our SRL model.

Training We train our models using stochastic gradi-
ent descent (SGD) with the AdaGrad adaptive learning rate
and a composite mirror descent objective with �2 regulariza-
tion following Duchi, Hazan, and Singer (2011). We used
the train data to define the SGD objective and to (option-
ally) adjust the AdaGrad η parameter during learning (Bot-
tou 2012). We used our evaluation objective (e.g. Labeled
SPRL F1) on the dev data for early stopping.6 Wherever we
report aggregated F1 over all properties, it is micro-averaged
F1. We used random search for hyper-parameter optimiza-
tion (Bergstra and Bengio 2012), sampling thirty random
configurations.7 For each model scenario, we trained under

5We use PyStanfordDependencies: https://github.com/dmcc. As the
gold head for PropBank and OntoNotes predicates and arguments,
we select the left-most token whose parent in the converted gold
dep-parse is not in the set of dominated tokens.

6Our joint models were each trained in view of optimizing only
one objective at a time. That is, the models in Table 4 were trained
using labeled SRL accuracy as the evaluation objective while the
models in Table 5 used SPRL Property F1.

7For each random configuration, hyper-parameters were inde-
pendetly selected from the following ranges: adaGradEta [5e-4,
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SRL +sense +arg-id Labeled F1

0 Naradowsky, Riedel, and Smith (2012) 78.55
1 Gormley et al. (2014) 86.54
2 our SRL model 87.40

SRL +sense Accuracy

3 our SRL model 90.78

SRL Accuracy

4 our SRL model 91.48

Table 2: English CoNNL 2009 SRL given gold syntax. Lines
0-1 report published results evaluating labeled role and sense
F1 with predicate heads pre-identified; line 2 is our model
for the same setting, the line 3 model has predicate-argument
pairs pre-identified (so F1=Accuracy), and line 4 drops sense
disambiguation from the evaluation.

OntoFull PropSmall

train ArgN SFT ArgN SFT

0 OntoFull 88.3 87.5 86.1 82.9
1 OntoMed 87.2 86.5 85.8 82.1
2 OntoSmall 82.3 81.4 82.0 77.0
3 PropSmall - - 87.0 79.1

Table 3: SRL accuracy given gold syntax and pre-identified
predicate-argument pairs under various train/test conditions.
Rows correspond to the dataset from which the train data
was used. Columns identify the labelset and the data from
which the test and dev sets were used.

all hyper-parameter configurations, selected the model with
the best dev performance, and evaluated on held out data.

With the exception of CoNLL09, we split the datasets
on WSJ section boundaries as follows: train (0-18), dev
(19-21), test (22-24). To compensate for the smaller size
of the PropSmall dataset which was filtered and sampled
from PropBank by Reisinger et al., our split reserves a larger
proportion of the data for development and test than does
CoNLL09.

SRL Table 2 shows that our SRL model performs well
compared to published work on the English CoNLL-2009
task using gold dependencies and part-of-speech tags. It also
shows the baseline performance on the SRL task we use
in the remainder of the paper (i.e. gold predicate-argument
pairs are pre-identified and predicate sense is not evaluated).
We include the two baselines from the literature of which we
are aware that use gold syntax for English CoNLL-2009.

Table 3 provides insights into the PropSmall SRL data
and contrasts the ArgN and SFT labelsets. Unsurprisingly,
regardless of the labelset, our SRL models perform worse
when fewer training examples are available. When train and

1.0], L2Lambda [1e-10, 10], featCountCutoff {1,2,3,4}, sgdAu-
toSelectLr {True, False}. Continuous parameters were sampled on
a log scale and then rounded to 2 significant digits.

syntax=gold syntax=none

setting ArgN SFT ArgN SFT

0 SRL 87.0 79.1 82.7 79.1
1 SRL|SPRL 87.7 80.2 83.2 80.4
2 SRL|SPRL� 86.8 80.5 84.5 79.4
3 SRL+SPRL 86.5 80.7 84.4 78.4
4 SRL+SPRL� 86.3 79.8 83.8 78.1

Table 4: Accuracy of SRL argument labeling in isolation,
given SPRL, or modeled jointly with SPRL; � indicates
second-order SPRL features.

syntax=gold syntax=none

setting ArgN SFT ArgN SFT

0 SPRL 80.9 80.7
1 SPRL� 81.7 80.8
2 SPRL|SRL 81.5 81.4 82.0 81.4
3 SPRL�|SRL 81.8 80.8 81.7 81.8
4 SRL+SPRL 81.2 81.1 81.0 80.9
5 SRL+SPRL� 81.3 81.3 81.2 81.1

Table 5: Multi-label F1 of SPRL in isolation, given SRL, or
modeled jointly with SRL.

test are both from a random sample of Ontonotes (i.e. the
OntoFull columns) the degradation as a function of training
size is roughly independent of the tagset. However, train-
ing on the random subsets and testing on PropSmall hurts
SFT prediction (> 4.4 decrease) more than ArgN (< 2.3 de-
crease). Rows 2 and 3 show a large contrast between ArgN
and SFT prediction on the two datasets.

SRL using SPRL Table 4 shows the SRL results on
test data from models that incorporate varying amounts of
SPRL information. The SRL model uses no SPRL annota-
tions, SRL|SPRL and SRL|SPRL� use gold annotations at test
time, while SRL+SPRL and SRL+SPRL� only use SPRL an-
notations at training time. Intuitively, SPRL set-valued la-
bels provide refinements of the coarser-grained SRL labels.
Comparing rows 0 and 1, we see that in all cases, features
of observed gold SPRL annotations allow us to learn better
models. Our results are mixed for adding higher-order fea-
tures and for jointly modeling SRL with SPRL. Comparing
row 0 to rows 3-4, we see inferred SPRL helping SFT label-
ing when gold syntax is available and helping ArgN labeling
when syntax is not available.8

SPRL with SRL Table 5 shows results for SPRL evalu-
ated as a retrieval task with F1. The results of these models
are much more invariant to the availability of our syntactic
features than were the SRL results of Table 4. The models
with second-order property factors in row 1 improve over

8In dev results (not shown here), the row 1 models excel those
of row 0 by even larger margins than on test while rows 3 and 4
actually perform worse than those of row 0.
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Baseline F1 Prec Rec

property majority 59.1 70.4 50.9
max type-level F1 62.9 48.9 88.3
Reisinger et al. (2015) 71.0 67.9 74.4

Reisinger et al. (2015) possible

By Property CF F1 Prec Rec train dev

instigation + 76.7 63.3 97.3 2811 376
volition + 69.8 56.4 91.6 2728 350
awareness + 68.8 57.4 85.7 3021 390
sentient 0 42.0 54.5 34.1 1856 244
physically existed 0 50.0 44.4 57.1 2663 362
existed before + 79.5 67.9 95.9 4978 699
existed during + 93.1 89.2 97.4 6566 879
existed after + 82.3 71.1 97.7 5358 729
created - 0.0 100.0 0.0 549 73
destroyed - 17.1 33.3 11.5 230 40
changed 0 54.0 61.4 48.2 2735 400
changed state 0 54.6 61.3 49.2 2705 396
changed possession - 0.0 100.0 0.0 473 74
changed location - 6.6 66.7 3.4 575 55
stationary - 13.3 40.0 8.0 285 53
location - 0.0 100.0 0.0 621 82
physical contact - 21.5 48.5 13.8 1138 150
manipulated + 72.1 80.9 65.1 4048 606

Table 6: Aggregate multi-label SPRL results and breakdown
by property the Reisinger et al. model. CF is to aid visualiza-
tion: + for F1 > 66.7, - for F1 < 33.3 and 0 otherwise. The
rightmost columns report the number of positive instances
in the gold train and dev sections of PropSmall.

those without in row 0. Conditioning on gold SRL or jointly
modeling SRL and SPRL generally helps except in some
cases where the second-order property factors are present.

SPRL Baselines To the best of our knowledge, the work
of Reisinger et al. (2015) contains the only prior SPRL re-
sult and, according to personal correspondence with some
of the authors, their predictive models were not a primary
goal of that work. A key contribution of this paper is that
we refine the evaluation and propose a model that substan-
tially outperforms the previously evaluated models. We have
modified the dataset split so as to be amenable to joint mod-
eling at the sentence (or even the section) level which makes
the prediction results released with the dataset (Reisinger et
al. 2015) not directly comparable to ours. Therefore, Table 6
replicates the approach of Reisinger et al. (2015) using our
evaluation and includes two other SPRL baselines (compare
to Tables 5 and 7; e.g. 71.0 versus 81.7 F1 from our model).
Our re-implementation of the “Full” method in Reisinger et
al. (2015) uses LibLinear (Fan et al. 2008) to fit a linear
model with a property-specific bias, a feature encoding the
distance and direction from the predicate to the argument
and an embedding of the predicate. We tuned a property-

possible

Property CF F1 Prec Rec train dev

instigation + 85.6 83.1 88.3 2811 376
volition + 86.4 84.3 88.5 2728 350
awareness + 87.3 85.7 88.9 3021 390
sentient + 85.6 88.1 83.2 1856 244
physically existed + 76.4 79.3 73.8 2663 362
existed before + 84.8 84.1 85.6 4978 699
existed during + 95.1 93.0 97.2 6566 879
existed after + 87.5 84.7 90.5 5358 729
created 0 44.4 64.9 33.8 549 73
destroyed - 0.0 0.0 0.0 230 40
changed + 67.8 67.5 68.2 2735 400
changed state 0 66.1 67.8 64.4 2705 396
changed possession 0 38.8 87.0 25.0 473 74
changed location 0 35.6 86.7 22.4 575 55
stationary - 21.4 100.0 12.0 285 53
location - 18.5 58.8 11.0 621 82
physical contact 0 40.7 62.5 30.2 1138 150
manipulated + 86.0 85.4 86.6 4048 606
total 81.7 83.1 80.3

Table 7: Breakdown of SPRL� results on held out test data
with gold syntax. Compare to baselines in Table 6.

specific regularization coefficient on dev aggregate F1.9 The
table also includes two additional aggregate baselines that
assign labels at the type level (i.e. each property is either
predicted as always present or absent). The first assigns the
majority label for each property according to the train+dev
data. The second assigns a positive label to the k most fre-
quent properties and then optimizes k for F1 on train+dev
(k = 10 being the best). After using the train and dev data
to determine which properties to always predict as positive,
we evaluate those predictions on the test data.

SPRL Breakdown By Property We now take a closer
look at results from our best SPRL model, SPRL� with gold
syntax (81.7 held-out F1). Table 7 gives a breakdown of re-
sults by property (compare to baselines in Table 6 and aggre-
gate results in Table 5). As with the Reisinger baseline, our
best performance (95.1) is for EXISTED DURING while we
get less than 30.0 F1 for DESTROYED, STATIONARY and LO-
CATION. Clearly, we struggle most with predicting the pres-
ence of infrequent properties. This is not surprising since
our micro-averaged F1 metric on which we tuned hyper-
parameters encourages us to focus on the categories with the
most examples.

SPRL Examples Figure 4 shows a variety of cherry-
picked outputs from the model on dev examples. In (a) it is
unclear whether two Boston sales representatives should
actually be considered the location of the event. In (b) our
model infers that the shops did not exist until they were

9In contrast, tuning a single regularization coefficient (as we did
for our other models) resulted in worse held-out F1 which is made
even worse if property-specific bias features are included.
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a In August , soon after ... replaced its president , two Boston sales
representatives sent customers a letter saying ...
b Last year , the Irish airport authority , in a joint venture with
Aeroflot , opened four hard-currency duty-free shops ...
c Enormous ice sheets retreated from the face of North America ,
northern Europe and Asia .
d The notice also grants relief for certain estate-tax returns .
e ... a reporter for the Reuters newswire miscalculated the indus-
trial average ’s drop as a 4 % decline ...
f She and her husband started a small printing business and need
the car for work as well as for weekend jaunts .
g In 1979 , the pair split the company in half , with Walter and his
son , Sam , agreeing to operate under ...
h Mr. Paul denies phoning and gloating .
Property a b c d e f g h

instigation + + + + +
volition + + + + +
awareness + + + + +
sentient + + + +
physically existed + + + + +
existed before + + + + + +
existed during + + + + + + + +
existed after + + + + + + + +
created +
destroyed
changed + + + + + +
changed state + + + +
changed possession +
changed location +
stationary
location
physical contact + + +
manipulated + + +

Figure 4: SPRL predictions from SPRL� with gold syntax;
highlighted cells reflect disagreement with annotator.

opened. Our output for (d) oddly misses that relief was CRE-
ATED despite correctly identifying that it did not EXIST BE-
FORE and did EXIST AFTER. In (g), it is surprising that the
model correctly predicts VOLITION and AWARENESS but
misses SENTIENT. This might be due to incorrect signal
from also missing PHYSICALLY EXISTED. Conversely, in
the miscalculated predicate of example (e) the annotations
identify a reporter that is SENTIENT and has VOLITION but
not AWARENESS, while the model infers that AWARENESS
indeed holds. Example (h) deals with a tricky, dubious event.

5 Related Work

The evaluation of Reisinger et al. accompanying the SPRL
data release is the most closely related to our work. How-
ever, our experiments address several concerns with their
setup. We split the data on section boundaries rather than
randomly selecting predicate-argument pairs. We incorpo-
rate features from the SRL literature and allow properties
to be predicted jointly, whereas their setup used a deliber-
ately simple set of features and predicted properties indepen-

dently. Our treatment of SPRL as multi-label classification
also leads to a different evaluation metric. Table 6 shows the
baseline for the new data splits and evaluation metric. Sev-
eral authors have considered trade-offs in annotator effort
and data-sparsity in arising in traditional SRL annotations
(Loper, Yi, and Palmer 2007; Yi, Loper, and Palmer 2007;
Zapirain, Agirre, and Màrquez 2008).

6 Conclusions and Future Work

We established the best reported results for SPRL under a
simple multi-label classification paradigm when predicate-
argument pairs have already been identified. We sought im-
provements to our SPRL model by including pairwise proto-
role factors and factors that join categorical role variables
with proto-role variables. We also investigated the contrast
between ArgN and semantic function tags as the underly-
ing theory for categorical role labeling and we looked at the
importance of dependency parse information to the model.

Suprisingly, we find that obsevered syntax and seman-
tic roles give little boost to SPRL F1 (at most, 1.3 abso-
lute) and that SFT SRL prediction also gains relatively lit-
tle from using SPRL or syntax. These negative results de-
serve further investigation. We believe that future work into
improved joint models should show stronger interactions be-
tween SRL and SPRL. In contrast, our best ArgN SRL model
on the same predicate-argument instances makes large gains
of 4.5 absolute F1 over the syntax-free analog and 0.7 over
the analog without SPRL. Furthermore, when syntax is not
available, ArgN SRL benefits from SPRL annotations avail-
able only at training time, improving by 1.7 absolute F1.

In future work, we wish to better leverage the ordinal na-
ture of the collected responses and handle the SPR2.x data
(White et al. 2016) that includes multiple, overlapping an-
notators.
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