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Abstract

Humans carry propositional assumptions about generic con-
cepts that are crucial for understanding the semantics of natural
language. We ask whether recent powerful language encoders
trained on large text corpora capture such stereotypic tacit as-
sumptions (STAs) (Prince, 1978). We construct a set of word
prediction prompts to evaluate whether recent contextualized
language models, BERT and RoBERTa, capture STAs elicited
from humans in a psychological study of human conceptual
associations. We find the latter model to be profoundly effec-
tive at both retrieving concepts given their associated proper-
ties and producing properties associated with concepts. Our
results demonstrate empirical evidence that stereotypic con-
ceptual representations are captured in neural models derived
from linguistic exposure.

Keywords: language models; deep neural networks; concept
representations; norms; semantics

Introduction
Recognizing generally accepted properties about concepts are
key to understanding natural language (Prince, 1978). For ex-
ample, if one mentions a bear, one does not have to explicitly
describe the animal as having teeth or claws, or being a preda-
tor or a threat. This phenomenon reflects stereotypic tacit as-
sumptions (STAs), i.e. propositions commonly attributed to
“classes of entities” (Prince, 1978). STAs, a form of common
knowledge (Walker, 1991), are salient to cognitive scientists
concerned with how human representations of knowledge and
meaning manifest.

As “studies in norming responses are prone to repeated
responses across subjects” (Poliak, Naradowsky, Haldar,
Rudinger, & Van Durme, 2018), cognitive scientists demon-
strate that humans share assumptions about properties asso-
ciated with concepts (McRae, Cree, Seidenberg, & McNor-
gan, 2005). We ask whether contextualized language models
trained on large corpora capture STAs. In other words, do
these models correctly distinguish concepts associated with a
given set of properties? To answer this question, we design
cloze tests (Figure 1) based on existing data of human-elicited
concepts with corresponding sets of properties.

We find that popular language models trained on large
corpora, e.g. BERT (Devlin, Chang, Lee, & Toutanova,
2018) and ROBERTA (Liu et al., 2019), capture STAs.
Furthermore, ROBERTA consistently outperforms BERT in
correctly associating concepts with their defining properties
across multiple metrics. Our analyses indicate that these

A has fur. dog, cat, fox, ...
A has fur, is big, and has
claws.

cat, bear, lion, ...

A has fur, is big, has claws,
has teeth, is an animal, eats, is
brown, and lives in woods.

bear, wolf, cat, ...

Figure 1: The concept bear as a target emerging as the highest
ranked of ROBERTA’s ranked predictions given a conjunction of
human-produced properties.

models associate concepts with different categories of prop-
erties better than with other categories of properties. Further-
more, we provide qualitative examples where the models’ as-
sociations differ from the human-elicited associations, yet are
still sensible. Unlike other work analyzing linguistic meaning
captured in language models, we do not fine-tine the language
models to the type of reasoning we evaluate for. Therefore,
our results demonstrate that exposure to large corpora alone,
without multi-modal perceptual signals, may enable a model
to sufficiently capture STAs.

Background
Contextualized Language Models. Language models
(LMs) assign probabilities to sequences of text. They
are trained on large text corpora to predict the proba-
bility of a new word based on the preceding sequence.
learn a distribution. Unidirectional models approximate for
any sequence w = [w1,w2, . . .wN ] the factorized distribution
p(w) = ∏

N
i=1 p(wi | w1 . . .wi−1). Recent neural bi-directional

language models do not have a well-formed probability of en-
tire sequences as they are trained to estimate the probability
of an intermediate token that has been removed from a se-
quence. Given input sequence w with a randomly-selected
word wi,1 ≤ i ≤ N, the contextual LM is typically trained
to predict the distribution Pr(wi | w1, . . .wi−1,wi+1, . . .wn).
When these neural bi-directional models pre-trained on larger
corpora are used as contextual encoders, performance across
a wide range of natural language understanding tasks drasti-
cally improves.

We investigate two recent neural language models: Bi-
directional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018) and Robustly optimized BERT
approach (ROBERTA) (Liu et al., 2019). BERT In addition
to the objective of filling in randomly-masked words, BERT



is trained with an auxiliary objective of next-sentence predic-
tion. BERT was trained on the BookCorpus (Zhu et al., 2015)
and English Wikipedia. Using the identical neural architec-
ture, ROBERTA was not trained with the next-sentence aux-
iliary objective but was trained on more data and larger input
sequences. Performance increased on standard NLU datasets
when BERT was replaced with ROBERTA as an off-the-shelf
contexualized encoder.

Probing Contextualized Language Models Recent re-
search employs word prediction tests to explore whether con-
textualized language models capture a range of linguistic phe-
nomena, e.g. syntax (Goldberg, 2019), pragmatics, semantic
roles, and negation (Ettinger, 2019). These diagnostics have
psycholinguistic origins; they draw an analogy between the
“fill-in-the-blank” word predictions of a pre-trained language
model and distributions of aggregated human responses in
cloze tests. Similar tests have been used to evaluate how well
these models capture symbolic reasoning (Talmor, Elazar,
Goldberg, & Berant, 2019) and relational facts (Petroni et al.,
2019). We also probe these models with cloze tests.

Stereotypic Tacit Assumptions Recognizing associations
between concepts and their defining properties is key to nat-
ural language understanding and plays “a critical role in lan-
guage both for the conventional meaning of utterances, and
in conversational inference” (Walker, 1991). Tacit assump-
tion (TAs) are commonly accepted beliefs about specific ob-
jects (Alice has a dog) and stereotypic TAs (STAs) pertain
to a generic concept, or a class of objects (people have
dogs) (Prince, 1978). STAs are generally agreed upon and
are vital for reflexive reasoning and pragmatics; Alice might
tell Bob ‘I have to walk my dog!,’ but she does not need to
say “I am a person, and people have dogs, and dogs need to be
walked, so I have to walk my dog!” Comprehending STAs al-
lows for generalized recognition of new categorical instances,
and facilitates learning new categories (Lupyan, Rakison, &
McClelland, 2007), as shown in early word learning of young
children (Hills, Maouene, Maouene, Sheya, & Smith, 2009).
STAs are not explicitly facts. Rather, they are sufficiently
probable properties assumed to be associated with concepts.

Our goal is to determine whether contextualized language
models exposed to large corpora encode associations between
concepts and their defining properties. We develop probes
that specifically test models’ ability to recognize STAs.

Probing for Stereotypic Tactic Assumptions
Despite introducing STAs, Prince (1978) provides only a few
examples, thus requiring the need to use other data to create
probes that evaluate how well contexualized language mod-
els capture STAs. We argue that semantic feature production
norms, i.e. properties elicited from human subjects regarding
generic concepts, fall under the category of STAs. Interested
in determining “what people know about different things in

the world,”1 humans subjects listed properties associated with
individual concepts (McRae et al., 2005). When many people
individually attribute the same properties to a specific con-
cept, they provide stereotypical tacit assumptions. We use
elicited properties that were repeated across human subjects.

Designing Probes We construct prompts for evaluating
STAs in LMs by leveraging the CSLB Concept Property
Norms (Devereux, Tyler, Geertzen, & Randall, 2013), a large
extension of the McRae data, containing 638 concepts each
linked with roughly 34 associated properties. The fill-in-
the-blank prompts are natural language statements composed
of properties where the target concept associated with those
human-provided properties is the missing word in the cloze
test. If LMs accurately predict the missing concept, we
posit that the LMs under consideration encode STAs. We it-
eratively grow prompts by appending conceptual properties
into a single compound verb phrase (Figure 1) until the verb
phrase contains 10 properties. Since we test for 266 concepts,
this process creates a total of 2,660 prompts.2 Devereux et al.
(2013) record production frequencies (PF) enumerating how
many people produced each property for a given concept. We
select and append the properties with the highest human PF in
decreasing order. Iteratively growing prompts enables a gra-
dient of performance - we observe concept retrieval based on
fewer (clue) properties and track improvements as more are
appended.

Probing Method Prompts are fed as input to the neural LM
encoder where the t th token is missing. A softmax is taken
over the output vector ht extracted from the model to ob-
tain a probability distribution over the vocabulary of possible
words. Following Petroni et al. (2019), we use a pre-defined,
case-sensitive vocabulary of roughly 21K case-sensitive to-
kens to control for the possibility that a model’s vocabulary
size influences its rank-based performance.3 We use this
probability distribution to obtain a ranked list of words that
the model believes should be the missing t token. We eval-
uate the BASE (-B) and LARGE (-L) cased models of BERT
and ROBERTA.

Evaluation Metrics We use mean reciprocal rank (MRR),
or 1/rankLM(target concept), which is more sensitive to fine-
grained differences in rank than just recall, a common re-
trieval metric. This tracks the predicted rank of a target con-
cept from relatively low ranks given few ‘clue’ properties to

1Instructions shown to participants - specifically appendix B.
2Because LMs are highly sensitive to the ‘a/an’ determiner pre-

ceding a masked word e.g. LMs far prefer to complete “A
buzzes,” with “bee,” but prefer e.g. “insect.” to complete “An
buzzes.”, a task issue noted by Ettinger (2019) we remove exam-
ples containing concepts that begin with vowel sounds. A prompt
construction that simultaneously accepts words that start with both
vowels and consonants is left for future work.

3The vocabulary is the unified intersection of the vocabularies
used to train BERT and ROBERTA.



Figure 2: Mean reciprocal rank and probability of correct answer as we increase the number of properties in prompt

much higher ranks as more properties are appended. MRR
above 0.5 for a test set indicates that a model top 1 prediction
was the correct target concept in a majority of examples. We
also report the overall probability the LM assigns to the target
concept regardless of rank. This allows us to measure model
confidence beyond its empirical performance.

Results
Figure 2 report the results. When given just one property, (x-
axis=1) Roberta-L achieves a MRR of 0.23, indicating that
the target concept appears on average in the model’s top-5
fill-in predictions. The increase in the MRR and models’
confidence (y-axis) as properties are iteratively appended to
prompts (increasing x-axis), demonstrates that the LMs more
accurately retrieve the correct missing concept when access-
ing more associated properties. MRR steeply increases for
all models as we add more properties to a prompt, but we
find less stark improvements beyond after adding four or five
properties.

The LARGE models consistently outperform their BASE
variants on both metrics, as do ROBERTAs over the BERTs
of the same size. ROBERTA-B and BERT-L perform inter-
changeably. Notably, ROBERTA-L achieves a higher per-
formance on both metrics when given just 4 ‘clue’ properties
than any other model when provided with all 10. ROBERTA-
L notably assigns double the target probability at 10 prop-
erties than that of the next-highest model (ROBERTA-B).
Thus, ROBERTA-L is profoundly more confident in its cor-
rect answers than any other model. However, that all models
achieve at least between .5 and .85 MRR conditioned on 10
properties illustrates these contextualized language models’
profound ability to identify concepts given their STA sets.

Qualitative analysis We find that model predictions
are nearly always grammatical and semantically sensible.
ROBERTA-L in particular rarely predicts answers that stray
far from the space of the correct answer. Highly-ranked in-
correct answers generally apply to a subset of the conjunc-
tion of properties, or are correct at an intermediate iteration

but become precluded by later-revealed properties4. Not all
prompts uniquely identify the target concept, even when a
prompt includes 10 properties. 5 However, models still pre-
dict answers that are likely to satisfy almost all of the clues.
Categories grouped by properties Are LMs better at re-
trieving concepts based on different types of properties? We
create additional prompts that contain only specific cate-
gories. We isolate the CSLB conceptual properties that are
grouped into three categories: visual perceptions (bears have
fur), functional (bears eat fish), and encyclopaedic (bears are
found in forests).6

Figure 3a shows that ROBERTA-L performs interchange-
ably well given encyclopedic or functional type properties
alone. In contrast, BERT better retrieves the target con-
cept when given the concept’s encyclopedic as opposed to
functional properties. Perceptual properties are overall less
helpful for models to distinguish concepts compared to non-
perceptual properties. This may be the product of category
specificity; while perceptual property are produced by hu-
mans nearly as frequently as non-perceptual, the average per-
ceptual property is assigned to nearly twice as many CSLB
concepts as the average non-perceptual (6 to 3). However,
the empirical finding coheres with previous conclusions that
models that learn from language alone lack knowledge of per-
ceptual features (Collell & Moens, 2016; Lucy & Gauthier,
2017). LMs’ ability to retrieve concepts based on associated
properties seems to depend based on the type of properties.
Selecting and ordering prompts When designing the
probes, we selected and appended the 10 properties with the
highest production frequencies (PF) in decreasing PF order.
How do these selection and ordering choices affect a models’

4e.g. tiger and lion are correct for ‘A has fur, is big, and
has claws’, but reveal to be incorrect with the appended ‘lives in the
forest’

5e.g. the properties of buffalo
6We omit properties defined as other perceptions (bears growl)

or taxonomic (bears are animals) as few concepts have more than
2-3 such associated properties.



(a) (b)

Figure 3: (a) Comparison of ROBERTA-L’s performance given only features from each category versus all combined. (b) ROBERTA-L
performance on the top-PF versus bottom-PF property sets ordered in increasing vs decreasing PF.

performance in the retrieval task? We compare the top-PF
property selection method with an alternative selection crite-
rion using the bottom-PF properties. For both selection meth-
ods, we compare the decreasing-PF ordering with a reversed,
increasing-PF order. We compare the resulting 4 evaluations
against a random baseline that measures performance using a
random permutation of a randomly-selected property set.7

Figure 3b shows the resulting changes in performance. Re-
gardless of ordering, the selection of the top (bottom)-PF fea-
tures improves (reduces) model performance relative to the
random baseline. Ordering by decreasing PF improves per-
formance over the opposite direction by up to 0.2 for earlier
sizes of property conjunction, but the two strategies converge
in performance for larger sizes. These results indicate that
the selection and ordering criteria of the properties may mat-
ter when adding them to prompts.

Eliciting norming data from language models
We have found that neural language models capture to a
surprising degree the relationship between human-produced
lists of stereotypic tacit assumptions and their associated con-
cepts. Can we use the LMs to list the properties associated
with given concepts under the same type of setup used for
human-elicitation? We attempt to replicate the “linguistic
filter” (McRae et al., 2005), i.e. lingustic patterns, through
which the human subjects convey conceptual knowledge.

In the human elicited studies, subjects were provided
“{concept} {relation}...” prompts where the relation could
one of four fixed phrases: is, has, made of, and does. Sub-
jects were asked to list properties that would fit the prompts.
We mimic this protocol using the first three relations:8 and
compare properties predicted by the language models’ to the
human response set provides.

7The random baseline’s performance is averaged over 5 random
permutations of 5 random sets for each concept.

8We do not investigate the does relation because the resulting
human responses are not trivially comparable using template-based
prompts. We also construct prompts using is a and has a for broader
coverage of the dataset.

Asking language models to list properties via word
prediction is inherently limiting as the models are not primed
to specifically produce properties beyond whatever cues
we can embed in the context of a sentence. In contrast,
human subjects are asked directly “What are the properties
of X?” (Devereux et al., 2013). This is a highly semantically
constraining question that cannot be asked of an off-the-shelf
language model. Consequently, when describing a dog,
humans would rarely, if never, describe a dog as being
“larger than a pencil”, even though humans are “capable
of verifying” this property (McRae et al., 2005). It may be
unfair to expect language models to replicate how human
subjects prefer to more properties that distinguish and are
salient to a concept (e.g. ‘goes moo’) as opposed to listing
properties that apply to many concepts (e.g. ‘has a heart’).
Thus, comparing properties elicited by language models
to those elicited by humans is a challenging endeavour.
Apprehending this issue, we prepend the phrase ‘Everyone
knows that’ to our new prompts. These prompts therefore
take the form of “Everyone knows that {a bear, a
ladder, ...} {is, has, is a, has a, is made of}

..” For the sake of comparability, we evaluate the
models’ responses against only the human responses that
fit the same syntax. We also remove human-produced
properties with multiple words following the relation (e.g.
‘is found in forests’) since these contextualized models
can only predict a single missing word. This results in
an evaluation of between 495 and 583 prompts set for the
relations considered.

Feature prediction results We use the information re-
trieval metric mean average precision (mAP) for ranked se-
quences of predictions in which there are multiple correct an-
swers. We define mAP here given n test examples:

mAP =
1
n

n

∑
i=1

|vocab|

∑
j=1

Pi( j)∆ri( j)



Relation |Data| Metric Bb Bl Rb Rl
is 583 mAPVOCAB .081 .080 .078 .190

mAPSENS .131 .132 .105 .212
ρHuman PF .062 .100 .062 .113

is a 506 mAPVOCAB .253 .318 .266 .462
mAPSENS .393 .423 .387 .559
ρHuman PF .226 .389 .385 .386

has 564 mAPVOCAB .098 .043 .151 .317
mAPSENS .171 .138 .195 .367
ρHuman PF .217 .234 .190 .316

has a 537 mAPVOCAB .202 .260 .136 .263
mAPSENS .272 .307 .208 .329
ρHuman PF .129 .153 .174 .209

made of 495 mAPVOCAB .307 .328 .335 .503
mAPSENS .324 .339 .347 .533
ρHuman PF .193 .182 .075 .339

Table 1: Mean average precision and Spearman ρ correlation with
human production for LM feature production from concepts. B and
R indicate Bert and RoBERTa, b and l indicate base and large mod-
els.

where Pi( j) = precision@ j and ∆ri( j) is the change in recall
from item j− 1 to j for test example i. We report mAP on
prediction ranks over a LM’s entire vocabulary (mAPVOCAB),
but also re-ranked over a much smaller vocabulary (mAPSENS)
comprising the set of human completions that fit the given
prompt syntax for all concepts in the study. This follows
the intuition that completions given for a set of concepts are
likely to be wrong completions for other concepts. While
mAP measure the capacity to distinguish the set9 of correct
responses from incorrect responses, we also compare proba-
bility assigned within the set of correct answers by computing
average Spearman’s ρ between human production frequency
and LM probability.

We find that ROBERTA-L outperforms all other versions,
sometimes by nearly double mAP. However, we find not in-
significant overlap with multiple relations, notably made of
and is a. No model’s prediction rank order correlates partic-
ularly strongly with that of the human productions frequen-
cies. As discussed below, prompts license completions that
are grammatically acceptable but not of the form targeted
(‘has arrived’ as opposed to ‘has wheels’). However, when
we preclude such completions by narrowing the models’ vo-
cabulary to contain only property words, we find that perfor-
mance (mAPSENS) increases across all models and relations.

Comparing LM probability with human probabilities
We can consider the listed properties as samples from a fuzzy
notion of a human STA distribution conditioned on the con-
cept and relation. These STAs reflect how humans codify
their probabilistic beliefs about the world. What a subject
writes down about the ‘dog’ concept reflects what that sub-
ject believes from their experience to be sufficiently ubiqui-
tous, i.e. extremely probable, for all ‘dog’ instances. The

9Invariant to order of correct answers

Relation mAPVOCAB(∆)
Bb Bl Rb Rl

is -.043 -.031 -.036 -.101
is a +.113 +.066 -.001 +.069
has -.034 -.019 -.092 -.279
has a +.069 +.075 +.029 -.111
made of -.004 +.032 -.052 +.020

Table 2: Change in mean average precision for LM feature produc-
tion when given prompts with minimized left context

dataset also portrays a distribution over listed STAs. Not all
norms are produced by all participants given the same con-
cepts reflecting how individuals hold different sets of STAs
about the same concept. Through either of these lenses, The
human subject has produced the sample e.g. ‘fur’ from some
p(STA | concept = bear, relation = has) 10. Like any distri-
bution over language, this can be approximated by a language
model and sampled—provided we use appropriate sampling
method.

Qualitative analysis of predictions Models generally pro-
vide completions that are at least coherent and grammatically
acceptable. Most outputs fall at least under the category of
‘verifiable of humans,’ as McRae note could be listed by hu-
mans given sufficient guidance. We also observe properties
that apply to the concept but are not reported by humans 11

and properties that apply to senses of a concept that were
not considered by the human subjects.12 We find that some
prompts are not sufficently syntactically constraining, licens-
ing non-nominative completions. The pattern has permits
past participle completions (e.g. ‘has arrived’) along with the
nominative attributes (‘has wheels’) we target. We do find
what could be considered artificial idiosyncracies of models;
they favor particular, at times semantically unacceptable rela-
tion completions regardless of concept.13

Effect of prompt construction on property production
To investigate the extent to which our prompt construction
encourages property production, we ablate the step in which
“everyone knows that” is prepended. Table 2 shows the re-
sulting change in mAP. That changes in prediction accuracy
vary so widely by model and relation highlights the diffi-
culty in construct prompt contexts that replicate the ‘linguis-
tic lense’ through which a LM might produce only concept
properties.

10This formulation should be taken with a grain of salt; the subject
is given all relation phrases at once and has the opportunity to fill out
as many (or few) completions as she deems salient, provided that in
combination there are at least 5 total properties listed.

11e.g. ‘hamsters are real’ and ‘motorcycles have horsepower’
12While human subjects list only properties of the anchor object

concept, the LMs also provide properties that apply to a television
anchor.

13ROBERTA-B often blindly produces ‘has legs’, the two BERT
models predict that nearly all concepts are ‘made of wood,’ and all
models except ROBERTA-L often produce ‘is dangerous



Prince Example ROBERTA-L

A person has parents, sib-
lings, relatives, a home, a pet,
a car, a spouse, a job. ,

person (0.73), child (0.1), hu-
man (0.04), family (0.03),
kid (0.02)

A country has a leader, a
duke, borders, a president, a
queen, citizens, land, a lan-
guage, and a history.

constitution (.23), history
(.07), culture (.07), soul
(.04), budget (.03), border
(.03), leader (.03), currency
(.02), population (.02)

Figure 4: ROBERTA-L captures Prince’s own exemplary STAs, as
shown by assigned probability to both concept and properties.

Capturing Prince’s STAs
We return to Prince (1978) to investigate whether neural lan-
guage models, which we have found to capture STAs elicited
from humans by McRae, do so as well for what she had
in mind. Prince lists some of her own STAs off the top of
her head about the concepts country and person. We ap-
ply the methodologies of the previous experiments and show
the resulting conceptual recall and feature productions in Fig-
ure 4. We find significant overlap in both directions of predic-
tion. Thus, the exact examples of basic information about the
world that Prince considers core to discourse and language
processing are clearly captured by the neural LMs under in-
vestigation.

Discussion & Conclusion
We explored the hypothesis owing to Prince (1978) that natu-
ral language understanding makes use of types of background
knowledge considered stereotypic tacit assumptions. We de-
veloped diagnostic experiments derived from human subject
responses to a psychological study of conceptual representa-
tions and observed that recent contextualized language mod-
els trained on large corpora may indeed capture such impor-
tant information. Through cloze tests, our results provide
a lens of quantitative and qualitative exploration of whether
BERT and ROBERTA capture concepts and associated prop-
erties. We illustrate that the conceptual knowledge elicited
from humans by Devereux et al. (2013) is indeed contained
within an encoder: that when a human subject may mention
something that ‘flies’ and ‘has rotating blades’, the LM can
infer the description is of a helicopter. This may suggest that
previous methods for injecting knowledge of semantic fea-
tures into type-level representations (Fagarasan, Vecchi, &
Clark, 2015; Derby, Miller, & Devereux, 2019) may be less
necessary for newer contextual encoders. Our work furthers
research in probing the extent of semantic knowledge cap-
tured by contextualized language models using word predic-
tion tasks.
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